Features of structure formation and properties of cast titanium bronzes obtained using thermally synthesized powder ligatures

  • 1 G. V. Kurdyumov Institute for Metal Physics of the NAS of Ukraine, Kyiv
  • 2 I.M. Franceviсh Institute for Problems of Material Science, NAS of Ukraine, Kyiv

Abstract

The study of the effect of heat treatment regimes on the structure and physical and mechanical properties of smelted titanium bronzes showed that after quenching castings from 800 °C, their structure of cast alloys has a significantly dendritic character and significantly lower hardness compared to the as-cast state. A significant increase in the level of hardness and strength of the alloys is achieved by aging at a temperature of 400 °C. The highest level of hardness and strength is characterized by the Cu – 2,7 % Ti alloy without aluminum. The dependence of the electrical conductivity of bronze additionally alloyed with 0,5 % Al and 3,0 % (wt.) Ni on the titanium content is extreme: the maximum conductivity (~33 % IACS) is observed for the alloy with 1,5 % (wt.) Ti. The alloying of titanium bronze (3 % Ti, 0,7 % Ni, 0,03 % B) and heat treatment of quenching at 900 °C, aging at 450 °C with isothermal holding for 0,5 h, contributed to an increase in the complex of physical and mechanical properties (tensile strength 870 MPa, yield strength 830 MPa, and hardness 106 HRB).

References

  1. D. Holliday, R. Resnick, J. Walker, Podstawy Fizyki, Wydawnictwo naukowe PWN, Warszawa 2021
  2. D. Griffiths, Podstawy elektrodynamiki, Wydawnictwo naukowe PWN, Warszawa 2020
  3. E. Hecht, Optyka, Wydawnictwo naukowe PWN, Warszawa 2018
  4. H. Karttunen, P. Kroger, H. Oja, M. Poutanen, K. J. Donner, Astronomia ogólna, Wydawnictwo Naukowe PWN, Warszawa 2020
  5. Z. Ablewicz, Osłony przed promieniowaniem jonizującym, Wydawnictwo Arkady, Warszawa 1986
  6. W. Heinrich, Cosmic rays and their interactions with the geomagnetic field and shielding material, Radiation Physicist and Chemistry v. 43, i. 1-2, pp. 19-34, 1994
  7. F. Forstmann, R. R Gerhardts, Metal optics near the plasma frequency, Advances in Solid State Physics v. 22, pp. 291-323, 2007
  8. A. D. Chave, J. R. Booker, Electromagnetic induction studies, Rewievs of Geophysicist v. 25, i. 5, pp. 989-1003, 1987
  9. E. A. Amirabadi, M. Salimi, N. Ghal-Eh, G. R. Etaati, H. Asadi, Study of Neutron and Gamma Radiation Protective Shield, International Journal of Innovation and Applied Studies, v. 3, i. 4 pp. 1079-1085, 2013
  10. K. W. Fornalski, Aktywna osłona przeciwradiacyjna, PL Patent P.234385, Warszawa, 2017

Article full text

Download PDF