АI-орtimized angled multimode interference splitter with buried sin waveguide for highperformance O-band photonic networks

  • 1 Faculty of Engineering, Holon Institute of Technology (HIT), Holon 5810201, Israel

Abstract

Traditional 1 × 2 multimode interference (MMI) splitters often encounter challenges such as high back reflections and limited output flexibility, which typically require additional structures like tapers or S-bends. These constraints limit their performance in advanced photonic networks. To overcome these issues, we propose an AI-optimized angled multimode interference (AMMI) splitter featuring a buried silicon nitride (SiN) core with silica cladding. By employing an angled propagation path, the device minimizes reflections to the source and allows greater adaptability for waveguide interconnections in dense photonic circuits. The design optimization was performed using a combination of artificial intelligence (AI) algorithms integrated with full-vectorial beam propagation method (FV-BPM) and finite-difference time-domain (FDTD) simulations. AI-driven parameter scanning enabled efficient exploration of the design space, improving device performance and robustness compared to manual optimization. The proposed AMMI splitter achieves an excess loss of 0.22 dB and an output imbalance of 0.001 dB at 1.31 μm, with total device length of 101 μm and thickness of 0.4 μm. Over the full O-band (1260–1360 nm), performance remains stable, with excess loss below 1.57 dB and imbalance below 0.05 dB, while maintaining back reflections as low as –40 dB. The compact CMOS-compatible design demonstrates high tolerance to fabrication deviations, making it highly suitable for large-scale integration. With its AI-enhanced optimization process, the proposed splitter supports high-speed, low-loss transmission for O-band photonic networks and data-center interconnects, offering scalability and reliability for next-generation optical systems.

Keywords

References

  1. Malka, D.; Zalevsky, Z.; Sintov, Y. Design of a 1×4 Silicon Wavelength Demultiplexer Based on Multimode Interference in Slot Waveguide Structures. In 2014 IEEE 28th Convention of Electrical & Electronics Engineers in Israel; IEEE: Eilat, Israel, 2014; pp. 1–4. https://doi.org/10.1109/EEEI.2014.7005746.
  2. Frishman, A.; Malka, D. An Optical 1×4 Power Splitter Based on Silicon–Nitride MMI Using Strip Waveguide Structures. Nanomaterials 2023, 13, 2077. https://doi.org/10.3390/nano13232077.
  3. Malka, D. 1×4 Visible Light MMI Wavelength Demultiplexer in GaN Slot-Waveguide Structure. In 2018 IEEE International Conference on the Science of Electrical Engineering in Israel; IEEE: Eilat, Israel, 2018; pp. 1–5. https://doi.org/10.1109/ICSEE.2018.8646159.
  4. Ben Zaken, B.; Zanzury, T.; Malka, D. Slot Silicon–Gallium Nitride Waveguide in MMI Structures Based 1×8 Wavelength Demultiplexer. In Digital Optical Technologies 2017; SPIE: Munich, Germany, 2017; Volume 10335, p. 103350P. https://doi.org/10.1117/12.2271686.
  5. Malka, D. WDM C-Band Four Channel Demultiplexer Using Cascaded Multimode Interference on SiN Strip Waveguide Structure. EPJ Web Conf. 2024, 305, 00010. https://doi.org/10.1051/epjconf/202430500010.
  6. Malka, D. A Silicon Nitride MMI O-Band Power Combiner Based on Slot Waveguide Structures. In Integrated Optics: Design, Devices, Systems and Applications VII; SPIE: Prague, Czech Republic, 2023; Volume 12575, p. 125750B. https://doi.org/10.1117/12.2669881.
  7. Menahem, J.; Malka, D. 1×4 Wavelength Demultiplexer C-Band Using Cascaded Multimode Interference on SiN Buried Waveguide Structure. Materials 2022, 15, 5067. https://doi.org/10.3390/ma15145067.
  8. Moatlhodi, O.; Ditshego, N.M.J.; Samikannu, R. Vertical Cavity Surface Emitting Lasers as Sources for Optical Communication Systems: A Review. J. Nano Res. 2020, 65, 51–96. https://doi.org/10.4028/www.scientific.net/JNanoR.65.51.
  9. Lal, S.; Link, S.; Halas, N.J. Nano-Optics from Sensing to Waveguiding. In Nanoscience and Technology; Co-Published with Science Press: Beijing, China, 2009; pp. 213–220.
  10. Wang, X.; Zhuang, X.; et al. High Gain Submicrometer Optical Amplifier at Near-Infrared Communication Band. Phys. Rev. Lett. 2015, 115, 027403. https://doi.org/10.1103/PhysRevLett.115.027403.
  11. Zhao, Q.; Yuan, W.; et al. Optical Fiber-Integrated Metasurfaces: An Emerging Platform for Multiple Optical Applications. Nanomaterials 2022, 12, 793. https://doi.org/10.3390/nano12050793.
  12. Hainberger, R.; Muellner, P.; et al. PECVD Silicon Nitride Optical Waveguide Devices for Sensing Applications in the Visible and <1 μm Near Infrared Wavelength Region. In Optical Sensing and Detection VI; SPIE: Brussels, Belgium, 2019; Volume 11031, p. 110310A. https://doi.org/10.1117/12.2527439.
  13. Rouifed, M.S.; Littlejohns, C.G.; et al. Ultra-Compact MMI-Based Beam Splitter Demultiplexer for the NIR/MIR Wavelengths of 1.55 μm and 2 μm. Opt. Express 2017, 25, 10893–10900. https://doi.org/10.1364/OE.25.010893.
  14. Bucio, T.D.; Khokhar, A.Z.; et al. N-Rich Silicon Nitride Angled-MMI for Coarse Wavelength Division (De)Multiplexing in the O-Band. Opt. Lett. 2018, 43, 1403– 1406. https://doi.org/10.1364/OL.43.001403.
  15. Seiler, P.M.; Georgieva, G.; Winzer, G.; et al. Toward Coherent O-Band Data Center Interconnects. Front. Optoelectron. 2021, 14, 414–425. https://doi.org/10.1007/s12200-021-1151-6.
  16. Wang, K.; Zhang, J.; et al. High-Speed PS-PAM8 Transmission in a Four-Lane IM/DD System Using SOA at O-Band for 800G DCI. IEEE Photonics Technol. Lett. 2020, 32, 293–296. https://doi.org/10.1109/LPT.2020.2971648.
  17. Chuan, N.B.; Premadi, A.; et al. Optical Power Budget and Cost Estimation for Intelligent Fiber-to-the-Home (i-FTTH). In 2010 International Conference on Photonics; IEEE: Langkawi, Malaysia, 2010; pp. 1–5. https://doi.org/10.1109/ICP.2010.5604473.
  18. Isakov, O.; Frishman, A.; Malka, D. Data Center Four- Channel Multimode Interference Multiplexer Using Silicon Nitride Technology. Nanomaterials 2024, 14, 486. https://doi.org/10.3390/nano14030486.
  19. Katash, N.; Khateeb, S.; Malka, D. Combining Four Gaussian Lasers Using Silicon Nitride MMI Slot Waveguide Structure. Micromachines 2022, 13, 1680. https://doi.org/10.3390/mi13101680.
  20. Brand, O.; Wolftson, B.; Malka, D. A Compact Polarization MMI Combiner Using Silicon Slot-Waveguide Structures. Micromachines 2023, 14, 1203. https://doi.org/10.3390/mi14061203.
  21. Cahill, L.W.; Le, T.T. Optical Signal Processing Using MMI Elements. In 2008 10th Anniversary International Conference
  22. on Transparent Optical Networks; IEEE: Athens, Greece, 2008; pp. 114–117. https://doi.org/10.1109/ICTON.2008.4598621.
  23. Mao, S.C.; Tao, S.H.; et al. Low Propagation Loss SiN Optical Waveguide Prepared by Optimal Low-Hydrogen Module. Opt. Express 2008, 16, 20809–20816. https://doi.org/10.1364/OE.16.020809.
  24. Ioudashkin, E.; Malka, D. High-Performance O-Band Angled Multimode Interference Splitter with Buried Silicon Nitride Waveguide for Advanced Data Center Optical Networks. Photonics 2025, 12, 322. https://doi.org/10.3390/photonics12040322.
  25. Ioudashkin, E.; Malka, D. A Three Demultiplexer C-Band Using Angled Multimode Interference in GaN–SiO2 Slot Waveguide Structures. Nanomaterials 2020, 10, 2338. https://doi.org/10.3390/nano10112338.
  26. Hu, Y.; Thomson, D.J.; Khokhar, A.Z.; Stanković, S.; Mitchell, C.J.; Gardes, F.Y.; Penades, J.S.; Mashanovich, G.Z.; Reed, G.T. Angled Multimode Interferometer for Bidirectional Wavelength Division (De)Multiplexing. R. Soc. Open Sci. 2015, 2, 150429. https://doi.org/10.1098/rsos.150429.
  27. Serecunova, S.; Seyringer, D.; Uherek, F.; et al. Design and Optimization of Optical Power Splitters for Optical Access Networks. Opt. Quantum Electron. 2022, 54, 365. https://doi.org/10.1007/s11082-022-03775-2.
  28. Wang, R.; Vasiliev, A.; et al. III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range. Sensors 2017, 17, 1788. https://doi.org/10.3390/s17081788.
  29. Song, J.H.; Snyder, B.; et al. Grating Coupler Design for Reduced Back-Reflections. IEEE Photonics Technol. Lett. 2018, 30, 217–220. https://doi.org/10.1109/LPT.2017.2779830.
  30. Wu, S.; Mu, X.; Cheng, L.; et al. State-of-the-Art and Perspectives on Silicon Waveguide Crossings: A Review. Micromachines 2020, 11, 326. https://doi.org/10.3390/mi11030326.
  31. Urbonas, D.; Mahrt, R.F.; Stoferle, T. Low-Loss Optical Waveguides Made with a High-Loss Material. Light Sci. Appl. 2021, 10, 15. https://doi.org/10.1038/s41377-020-00451-1.
  32. Bar Gelkop; Malka, D. Design of a Four Channel Green- Wavelength Multiplexer Based on Multicore Polymer Optical Fiber. Opt. Laser Technol. 2025, 192 (Part B), 113635. https://doi.org/10.1016/j.optlastec.2025.113635.
  33. Pugachov, Y.; Gulitski, M.; Mizrahi, O.; Malka, D. Design of All-Optical Logic Half-Adder Based on Photonic Crystal Multi-Ring Resonator. Symmetry 2023, 15, 1063. https://doi.org/10.3390/sym15051063.
  34. Avital, N.; Nahum, E.; Levi, G.C.; Malka, D. Cognitive State Classification Using Convolutional Neural Networks on Gamma-Band EEG Signals. Appl. Sci. 2024, 14, 8380. https://doi.org/10.3390/app14188380.
  35. Avital, N.; Shulkin, N.; Malka, D. Automatic Calculation of Average Power in Electroencephalography Signals for Enhanced Detection of Brain Activity and Behavioral Patterns. Biosensors 2025, 15, 314. https://doi.org/10.3390/bios15050314.
  36. Rabinovitch, A.; Baruch, E.B.; Siton, M.; Avital, N.; Yeari, M.; Malka, D. Efficient Detection of Mind Wandering During Reading Aloud Using Blinks, Pitch Frequency, and Reading Rate. AI 2025, 6, 83. https://doi.org/10.3390/ai6040083.
  37. Avital, N.; Egel, I.; Weinstock, I.; Malka, D. Enhancing Real- Time Emotion Recognition in Classroom Environments Using Convolutional Neural Networks: A Step Towards Optical Neural Networks for Advanced Data Processing. Inventions 2024, 9, 113. https://doi.org/10.3390/inventions9060113.

Article full text

Download PDF