Effect of chromium on the microstructure of AlSi7Mg alloy with increased iron content
- 1 Silesian University of Technology, Poland
- 2 Superior Industries Production Poland Sp. z o.o., Poland
- 3 Superior Industries Production, Mexico
Abstract
The need to protect the environment by reducing the energy intensity of production, the amount of waste, and reducing greenhouse gas emissions, as well as shrinking bauxite resources, means that secondary raw materials are playing an increasingly important role in aluminum alloy smelting. However, the increase in the proportion of scrap results in a higher content of various impurities, the worst of which is iron in the group of metallic ones. It is well known that manganese is one of the most commonly used additives to neutralize morphologically unfavorable β-Al5FeSi phases. However, there is little information about the effects of other transition elements, such as chromium. Accordingly, the study’s results concern the effect of chromium on the microstructure of AlSi7Mg alloy with increased iron content (from 0.4wt.% to 1.4wt.%, in 0.2% increments). Based on SEM/EDX and XRD studies, it was found that the addition of chromium causes the transformation of the lamellar-needle phase β-Al5FeSi into the α-Al13(Fe,Cr)4Si4 phase with a dendritic morphology (so-called “Chinese script”). However, care should be taken not to exceed the permissible value of the chromium/iron quotient (Cr/Fe ~ about 1/3). Otherwise, the morphology of the α-Al13(Fe,Cr)4Si4 phase changes from more “fluffy” to massive polygons. This is accompanied by an unfavorable increase in the slime ratio from about 1.6 to more than 3.0%.
Keywords
References
- C. Kammer, Aluminium Handbook. Vol. 1: Fundamentals and Materials (Beuth Verlag GmbH, 2011)
- T. O. Mbuya, B. O. Odera, P. S. Ng’ang’a, International J. of Cast Metals Research, 16, 15 (2003)
- J. R. Davis, Aluminum and Aluminum Alloys (ASM Specialty Handbook, ASM International, Materials Park, OH, 1993)
- J. A. Taylor, Procedia Materials Science, 1, 15 (2012)
- S. Ferraro, A. Fabrizi, G. Timelli, Materials Chemistry and Physics, 153, 12 (2015)
- S. Seifedine, I. L. Svensson, Metallurgical Science and Technology, 27, 10 (2009)
- H. Guo, X. Yang, J. Wang, J. of Alloys and Compounds, 485, 5 (2009)
- A. M. Samuel, F. H. Samuel, J. of Materials Science, 30, 11 (1995)
- D. Bösch, S. Pogatscher, M. Hummel, W. Fragner, P. J. Uggowitzer, M. Göken, H. W. Höppel, Metallurgical and Materials Transactions A, 46A, 11 (2015)
- N. A. Belov, A. A. Aksenov, D. G. Eskin, Iron in Aluminum Alloys. Impurity and Alloying Element (Taylor & Francis Inc, New York 2002)
- S. G. Shabestari, Materials Science and Engineering, 383A, 10 (2004)
- W. S. Ebhota, J. Tien-Chien, Intermetallics formation and their effect on mechanical properties of Al-Si-X alloys (IntechOpen 2014)
- X. Cao, J. Campbell, Materials Transaction, 47, 10 (2006)
- M. Mahta, M. Emamy, X. Cao, J. Campbell, Materials Science Research Trends, 21 (2008)
- A. Pennors, A. M. Samuel, F. H. Samuel, H. W. DotyAFS Transactions, 106, 14 (1998)
- P. Mikołajczyk, L. Ratke, Arch. of Foundry Eng., 15, 14 (2015)
- S. Seifeddine, S. Johansson, I. L. Svensson, Mat. Sci. and Eng., 490A, 6 (2008)
- G. Gustafsson, T. Thorvaldsson, G. L. Dunlop, Metallurgical Transactions, A17, 8 (1986)
- Z. Ma, A. M. Samuel, F. H. Samuel, H. W. Doty, S. Valtierra, Mat. Sci. and Eng., 490, 6 (2008)
- S. G. Shabestari, M. Keshavarz, M. M. Hejazi, J. of Alloys and Compounds, 477, 8 (2009)
- W. Eidhed, J. of Mat. Sci. and Tech., 24, 3 (2008)
- G. Timelli, F. Bonollo, Mat. Sci. and Eng., A528, 10 (2010)
- J. Piątkowski, L. Chowaniec, T. Matuła, Machines. Technologies. Materials, 19, 4 (2025)
- M. Mahta, M. Ememy, A. Daman, A. Keyvani, J. Campbell, Int. J. of Cast Metals Research, 18, 7 (2005)
- R. Kakitani, A. V. Rodrigues, C. Silva, A. Garcia, N. Cheung, J. of Alloys and Metallurgical System, 1, 12 (2023)