Reinforced with fullerenes composites based on metallic matrices

  • 1 Department of Disperse Systems Pulse Treatment, Institute of Pulse Processes and Technologies, National Academy of Science of Ukraine, Mykolaiv 54018, Ukraine
  • 2 Center of Microelectronics and Nanotechnology, University of Rzeszow, 1 Pigonia Str., 35-959 Rzeszow, Poland


A new technological approach to obtain anti-friction dispersion-hardened by nanoparticles materials based on of TiC – AlC – and FeC alloys with inclusions of the Cn0 (n=6 or 7) phases which characterized by high heat resistance, strength and durability for use in aircraft and rocket technology, is presented. Elemental powders of Al–Ti–С and Fe–Ti–С systems are used as base objects for development of new composite materials by high voltage electric discharge treatment in kerosene (dispersion, activation and synthesis). In effect, as shown micro-Raman data, these systems contain refractory components (fullerenes, carbides), MAX-phases of Ti-Al-C system with increasing thermo-stability, strength and wear resistance while maintaining ductility how can it be predicted.



  1. T. Tokunaga, K. Kaneko, K. Sato, Z. Horita. Scripta Materialia, 58 735 (2008).
  2. F. A. Khalid, O. Befort, U. E. Klotz, B. A. Keller, P. Gasser, S. Vaucher, Acta Materialia, 51, 4575 (2003).
  3. S. R. Bakshi, V. Singh, S. Seal, A. Agarwal, Surface and Coatings Technology, 203, 1544 (2009).
  4. S. R. Bakshi, V. Singh, K. Balani, D. G. McCartney, S. Seal, A. Agarwal, Surface and Coatings Technology, 202, 5162 (2008).
  5. A. K. Keshri, K. Balani, S. R. Bakshi, V. Singh, T. Laha, S. Seal, A. Agarwal, Surface and Coatings Technology, 203, (2009).
  6. H. Uozumi, K. Kobayashi, K. Nakanishi, T. Matsunaga, K. Shinozaki, H. Sakamoto, T. Tsukuda, C. Masuda, M. Yoshida, Materials Science and Engineering A, 495, 282 (2008).
  7. C. S. Gon, J. Wei, L. C. Lee, M. Gupta, Composites Science and Technology, 68, 1432 (2008).
  8. M. Paramsothy, S. F. Hassan, N. Srikanth, M. Gupta, Applied Science and Manufacturing, 40, 1490 (2009).
  9. D. K. Lim, T. Shibayanagi, A. P. Gerlich, Materials Science and Engineering A, 507, 194 (2009).
  10. A. M. K. Esawi, M. A. El Borady, Composites Science and Technology, 68, 486 (2008).
  11. H. J. Choi, G. Kwon, G. Lee, D. Bae, Scripta Materialia, 59, 360 (2008).
  12. L. A. Yolshina, R.V. Muradymov, I. V. Korsun, G. A. Yakovlev, S. V. Smirnov, J. Alloys and Compounds, 663, 449 (2016).
  13. A. M. K. Esawi, K. Morsi, A. Sayed, A. A. Gaward, P. Borah, Materials Science and Engineering A, 508, 167 (2009).
  14. H. J. Choi, J. H. Shin, D. H. Bae, Composites Part A: Applied Science and Manufacturing, 43, 106 (2012).
  15. K. Choi, J. Seo, D. Bae, H. Choi, Trans. Nonferrous Met. Soc. China, 24, 47 (2014).
  16. R. Pérez-Bustamante, C. D. Gómez-Esparza, I. Estrada-Guel, M. Miki-Yoshida, L. Licea-Jiménez, S. A. Pérez-García, R. Martinez-Sánchez, Materials Science and Engineering A, 508, 159 (2009).
  17. M.S. Dresselhaus, G. Dresselhaus, and P.C. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic Press, NewYork, NY/San Diego, CA, 1996.
  18. R. Deves, D. Aspimvall, J. Simao, H.G.Lee. Electric Al, Materials Word, 11 16 (2003).
  19. D. Golberg, Y. Bando, O. Stéphan, and K. Kurashima, Appl. Phys. Lett. 73, 2441 (1998).
  20. O. N. Sizonenko, A. I. Vovchenko, International virtual journal for science, technics and innovations for the industry, 8, 41 (2014).
  21. Z. A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, Journal of Materials Science, 41, 763 (2006).
  22. E. Osawa, Perspectives of Fullerene Nanotechnology, Springer Science & Business Media, 2002, 375 p.
  23. R. Saito, M. Hofmann, G. Dresselhaus, A. Jorito and M. S. Dresselhaus, Advances in Physics, 60, 413 (2011)
  24. O. N. Sizonenko, E. G. Grigoryev, A. D. Zaichenko, N. S. Pristash, A. S. Torpakov, Y. V. Lypian, V. A. Tregub, A. G. Zholnin, A. V. Yudin, and A. A. Kovalenko, High Temp. Mater. Proc. 36, 891 (2017).
  25. O. N. Sizonenko, G. A. Baglyuk, E. I. Taftai, A. D. Zaichenko, E. V. Lipyan, A. S. Torpakov, A. A. Zhdanov, N. S. Pristash, Powder Metall. Met. Ceram. 52, 247 (2013).
  26. D. S. Bethune, G. Meijer *, W. C. Tang, H. J. Rosen, W. G. Golden, H. Seki, C. A. Brown, M. S. de Vries, Chemical Physics Letters, 179, 175 (1991)
  27. O. Chernogorova, I. Potapova, E. Drozdova, V. Sirotinkin, A. V. Soldatov, A. Vasiliev, and E. Ekimov, Appl. Phys. Lett., 104, 043110 (2014)
  28. K.J. Cai, Y.Zheng, P. Shen, S. Y. Chen, CrystEngComm, 24 (2014).
  29. K. J Cai, Y. Zheng, P. Shen and S. Y. Chen. CrystEngComm, 16, 5466 (2014)

Article full text

Download PDF