The symmetry of nanoparticles

  • 1 Grodno, Belarus, Faculty of physics and technology – Yanka Kupala State University of Grodno, Belarus,
  • 2 Molder, ltd – Grodno, Belarus,
  • 3 Faculty of Innovative Technologies of Mechanical Engineering – Yanka Kupala State University of Grodno, Belarus,

Abstract

The physical properties of nanoparticles as modifiers are depend on their geometrical characteristics. These objects have 5- and 10-axis symmetry which is forbidden for crystals. The 3×3 matrices-generators of point groups of rotation in crystallographical and crystallophysics basises have as matrix elements 0 and ±1, except groups hexa- and trigonal in H-basis crystals. But these lattices too have 0 and ±1 as matrix elements for matrical representation of point moving in crystallographical basis. For describing the point groups of pentagonal and decagonal symmetries, instead of crystal lattices the so-named general regular lattices (GRL). The two dimensional GRL is known as Penrose’s sets. For 3-d pentagonal sets there are 14 groups of point symmetry, which are not crystallographic because their elements may be golden ratio.

Keywords

References

  1. Elcoro, L., Perez-Mato, J.M., Madariaga, G. Determination of quasicrystalline structures: a refinement program using symmetry-adapted parameters. - Acta cryst. A50, 1994, p. 182-193.
  2. John W. Cahn. Quasicrystals. ­ J. Res. Natl. Stand. Technol., 2001, vol. 106, p. 975-982.
  3. Cervellinot, A., Steurer, W. General periodic average structures of decagonal quasicrystals. - Acta cryst. A58, 2002, p. 180-184.
  4. Lee, H., Swendsen, R., Wodom, M. Crystalline ground states of an entropically stabilized quasicrystal model. - Phys. Rev. B, vol. 64, 2001, p. 224201/1-224201/4.
  5. Wang, G.-W., Komatsu, K., Murata, Y., Shiro, M. Synthesis and X-ray structure of dumb-bell-shaped C120 . ­ Nature, 1997, no. 5, p. 583-586.
  6. Liopo, V. The matrical representation of the 4-D basical tri- and hexagonal point groups of symmetry.- Long Abstr. XV ECM. Drezden, AGermany.-MT15 (20), 1994.
  7. Senechal, M, Quasicrystals and Geometry. Cambridge University Press. New York, 1995.
  8. Liopo, V. The matrical representation of point group of dodecahedron symmetry for 3-D and 6-D spaces.- Krystallographia, 1991, vol. 36, no. 4, p. 809-812.
  9. Liopo, V., Sabutz, A. Fedorov's ideas in the theory of poly-dimension regular lattices. ­ Abstr.of XV Int. Conf.­ X-ray diffraction and Crystal Chemistry of minerals. Saint-Pet., 2003, p. 14-16.
  10. Phan, T., Veysseyte, R., Weigel, D. Crystallography, geometry and physics in higher dimensions. IV. Crystallographic cells and polytopes or 'molecules' of four-dimensional space E4. - Acta cryst. A44, 1988, p. 627-637.
  11. Yamamoto, A., Ishihara, K.N. Penrose patterns and related structures. II. Decagonal quasicrystals. - Asta cryst. A44, 1988, p.707-714.
  12. Liopo, V., Sabutz, A., Struk, V. The point symmetry of monoelement nanoparticles. ­ abstr.of Int. Conf.­ Fullerenes and atomic clusters. Saint-Pet., 2007, p.183.
  13. Yamamoto, A., Takakura, H. Six-dimensoinal model of icosahedral Al-Pd-Mn quasicrystals. ­ Phys. Rev. B, vol. 68, 2003, p. 094201/1- 094201/12.
  14. Liopo, V.A., Nikitin, A.V., Sabutz, A.V., Struk, V.A., Kravchenko, V.I. The symmetry of nanoparticles. ­ Abstr. of 15 Int. Conf.­ Mechanics of Composite Materials, Riga, Latvia, 2008, p. 169-170.
  15. Poling, L., Poling, P. Chemistry. – Moscow, 1978. 683 p. (in Russian)
  16. Bondarev, V.P. Fundamental mineralogy and crystallography. Moscow, Science. 1978. 318 p. (in Russian)
  17. Kostov, I. Crystallography. Moscow. 1965. 528 p. (in Russian)
  18. Shascolskaja, M.P. Crystallography. Mocsow. 1976. 391 p. (in Russian)
  19. Vanstain, B.K. Modern crystallography. Moscow Science. 1979. 383 p. (in Russian)
  20. Liopo, V.A. Matrix crystallography. Grodno. 1998. 78 p. (in Russian)
  21. Gusev, A.M. Effects of nanocrystalline state in compact metals and compounds. SPS. 1998. V. 168. №1. P. 55 – 83. (in Russian)
  22. Gripon, С. Relation between solubility and effective solute-solute interaction for C60. J. Cryst. Growth. 1998. – V. 183. – p. 258 – 268.
  23. Cahn, J.W. Quasicrystals. J. Res. Natl. Stand. Technol. 2001. – V. 106. p 975 – 982.
  24. Liopo, V. The Geometrical Parameters of Nanoparticles for Polymeric Composite Materials. / V. Liopo [and oth.] // Proceed of 14th Inter. Conf. Mechanika. Kaunas, Lithuania, 2009. – p. 244 – 248.

Article full text

Download PDF