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Abstract: Geometrically, the reciprocal lattice is built on the basis of the lattice of the crystal according to the rule 
*
j k jka a   , where

the vectors 
*
ja , ka are the periods of the crystal and reciprocal lattices corresponding 0jk  at j k and 1jk   at j k (j, k = 1,2,3). 

The “weight” of the reciprocal lattice node, determined by the structural amplitude of the crystallographic plane corresponding to it, should 

not be zero, since in this case the reciprocal lattice node will be homologous to any point of the reciprocal space outside the lattice.  

Crystals with Bravais I, F, C – type cells in the reciprocal lattice are characterized by super cells,  periods of which are n – times larger than 

𝑎∗ = 𝑎−1, where a is the period of the lattice cell. With respect to complex structures, even if they are single-element, the period of the super

cell of the reciprocal lattice can exceed 𝑎∗ several times. For a diamond crystal 𝑎𝑠
∗ = 4𝑎∗under the super cell of the reciprocal lattice it is

necessary to use the smallest parallelepiped, the “weight” of all vertex nodes of which is not equal to zero. 

KEYWORDS: “WEIGHT” OF THE RECIPROCAL LATTICE NODE , CELL AND SUPER CELL RECIPROCAL LATTICE.  

1. Introduction

The crystal lattice assumes regularity in the arrangement of 

atoms along any direction. This means that when choosing two 

adjacent identical structural-chemical (homologous) elements with a 

distance between them - α, on a straight line passing through these 

two points, there will be homologous or points with a distance t = 

nα, where n is an integer. The value of t is the translation, the 

transfer of the crystal to which it leads to self-coincidence. Three 

non-coplanar translations , ,a b c selected according to the 

corresponding requirements, form a parallelepiped called the crystal 

cell. The cell must meet the following requirements: 

1. The point symmetry of the cell is the same as that of the

crystal as a whole;

2. The number of right angles in the cell should be

maximum;

3. The total cell surface should be the smallest.

The listed requirements allow in most cases to choose one of the

many possible options. In the general case, the lattice cell of a 

crystal is an oblique parallelepiped with three linear (a, b, c) and 

three angular (α, β, γ) parameters. The cell can be described by the 

vectors  

, ,a b c which form the crystallographic coordinate system (kg) (or 

Bravais rapper). The coordinates of a point within a cell are 
measured in units of parameters a, b, c. 

Tasks to be solved: 

1. To show that the assertion that the F-type lattice of the

crystal forms a cell I-type in the reciprocal lattice.  Statement that

the I-cell forms F-type lattice is incorrect, because the cells of the

reciprocal lattice can not contain nodes with non-integer

parameters.

2. To justify the necessity of introducing the concept of a

super reciprocal lattice cell.

3. To show that, along with the coordinate of the reciprocal

lattice site, its “weight” determined by the structural amplitude F (h,

k, l) must be taken into account.

4. Show that a number of nodes in the indicated reciprocal

lattices have zero “weights”.

2. The relationship between the cells of the

cristal and reciprocal lattices. 

An arbitrary plane in the crystal cuts off the coordinates (𝑥, 𝑦, 𝑧)kg 

from the crystallographic axes and necessarily has a set of planes 

homologous to it. 

The Interplanar distance between the adjacent planes is equal to d. 

Let one of the planes pass through a point with coordinate 𝑥kg . The

plane homologous to it within the first cell is located at the origin of 

coordinates. Section 𝑥kg ≤ 𝑎. Any crystallographic plane cuts off

the segment 𝑥kg  = a/h from the crystallographic axis, where h is a

mandatory integer [1]. 

In the three-dimensional version, the crystallographic plane 

passes through points with crystallographic coordinates 

(x,y,z)kg=(a/h,b/k,c/l). Integers (h,k,l) are called crystallographic 

indices. It follows from the above that one of the sets of identical 

planes necessarily passes through two, three, four vertices of the 

lattice. 

The value of the interplanar distance is determined by the 

method of x-ray electron or neutron diffraction (X-ray, electron and 

neutron diffraction methods, respectively). 

If the X-ray beam at the slip angle θ (beam 1) falls on the 

crystallographic plane I (Figure 1), and is reflected from it, and the 

next plane II (beam 2) interferes with these rays, then the diffraction 

angle is 2θ. The angular position of the  reflex is described by the 

Wolf-Bragg equation. 

2𝑑𝑠𝑖𝑛𝜃 = 𝑛𝜆   (1) 

where d is the interplanar distance, λ is the radiation wavelength, n 

is an integer.  

Fig. 1. To the condition of the Wоlf-Bragg 

The value of 𝑑 𝑛   is determined experimentally and is 

considered as 𝑑 𝑛 ≡ 𝑑 for the corresponding crystallographic 

planes. Each of the d (h, k.l) planes can be represented as a point of 

reciprocal space (Figure 2).
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Fig. 2. - (a) - mapping of the d (h, k, l) plane, (b) - in the reciprocal 
space 

The point (*) is a map of the space of a crystal 𝑑    (h, k, l) of the 

space of a crystal. The radius vector of a point (*) in the reciprocal 

space is equal to 𝑟 ∗ = 𝑑 (−1). 

Moreover, 𝑟 ∗ is parallel to 𝑑   . It is obvious that the transition 

from the reciprocal space to the cristal one is also easy to 

implement. Each node of the reciprocal lattice has integer 

coordinates (h, k, l) in its crystallographic system, that are linked to 

the Brave Crystal Rapper. 

Nodes (h, k, l) in the reciprocal space form a lattice, but unlike 

crystal space, this lattice determines only the position of the nodes, 

but is not a translational symmetry. Each x-ray reflex has its own 

intensity (I), which characterizes the “weight” of the reciprocal 

lattice site. The greater I (h, k, l), the greater the “weight” of the 

node (h, k, l), which we denote F (h, k, l). 

In the reciprocal lattice, as in a crystal  lattice, an elementary 

parallelepiped is selected with parameters 𝑎∗, 𝑏∗, 𝑐∗, 𝛼∗, 𝛽∗, 𝛾∗, 

moreover, this choice depends on the cell of the crystal lattice, since 

 𝑎, 𝑏, 𝑐, 𝛼, 𝛽, 𝛾 = (𝑎𝑖  
0  𝛼𝑖

0)𝑖=1,2,3 is connected with 

 𝑎∗, 𝑏∗, 𝑐∗, 𝛼∗, 𝛽∗, 𝛾∗ = (𝑎𝑗
∗ 𝛼𝑗

∗)𝑗 =1,2,3 with the conditions: 

 

𝑎𝑗
∗(0)

=
𝑎𝑗+1

0(∗)
 𝑎𝑗+2

0 ∗ 
 𝑠𝑖𝑛 𝛼𝑗

0(∗)

𝑉0(∗) ,                                             (2)  (2) 

𝑐𝑜𝑠𝛼𝑗
∗(0)

=
𝑐𝑜𝑠𝛼𝑗+1 

0(∗)
𝑐𝑜𝑠𝛼𝑗+2 

0(∗)
−𝑐𝑜𝑠𝛼𝑗  

0(∗)

𝑠𝑖𝑛 𝛼𝑗+1
0(∗)

 𝑠𝑖𝑛𝛼𝑗+2
0(∗) ,                                (3) (3) 

or 

𝑠𝑖𝑛𝛼𝑗
∗(0)

=
𝑟0(∗)

𝑠𝑖𝑛𝛼𝑗+1
0(∗)

 𝑠𝑖𝑛𝛼𝑗+2
0(∗),                                              (4) (4) 

where 𝑟0(∗) = (1 − 𝑐𝑜𝑠2 𝛼0 ∗ − 𝑐𝑜𝑠2 𝛽0 ∗ − 𝑐𝑜𝑠2 𝛾0 ∗ +

2𝑐𝑜𝑠 𝛼0 ∗  𝑐𝑜𝑠  𝛽0 ∗  𝑐𝑜𝑠 𝛾0 ∗ )
1

2  , 𝑉∗(0) – the volumes of the  

reciprocal (cristal) cells of the lattices, determined by the formula: 

𝑉∗(0) = 𝑎∗(0) 𝑏∗(0) 𝑐∗(0)𝑟∗(0),                                         (5) (5) 

The scalar multiplication of the vectors Bravais rapper of the 

crystal and reciprocal cells are equal (𝑎𝑗
∗ 𝑎𝑘

0) = 𝛿𝑗𝑘 . From 

conditions (2-5) it follows that the reciprocal lattice of reciprocal 

lattice is a crystal lattice. 

The reciprocal and direct lattices are described by formally 

symmetric transitions from the parameters of one lattice to the 

parameters of another, but both of these lattices are characterized by 

cells as an elementary geometric configuration. These two lattice 

are significantly different from each other. In the crystal lattice, all 

cells are absolutely identical with each other. That is, the following 

is always true: 

𝑇 𝑅 𝑥, 𝑦, 𝑧 = 𝑅′  (𝑚𝑥, 𝑛𝑥, 𝑝𝑧),                                       (6) (6) 

where 𝑇  – translation operator. Moreover, the points (x, y, z) and 

(mx, nx, pz) are homologous, that is, they can be swapped, but no 

properties of the lattice will change. At the nodes of the crystal 

lattice and, therefore, at the vertices of the cell are homologous 

points. It can be a single atom, any point of a molecule, a certain 

point of a molecular radical, the center of a structural polyhedron, 

etc. In the cell of the reciprocal lattice the nodes are points with 
radius vectors. 

𝑟 ∗ = ℎ𝑎 ∗ + 𝑘𝑏  ∗ + 𝑙𝑐 ∗,                                                    (7) 

The vertices of the crystal cell located in the octant of the 

coordinate system 𝑥∗, 𝑦∗, 𝑧∗ are a parallelepiped with coordinates of 

the vertices 000; 100; 010; 001; 110; 101; 011; 111. In the 

reciprocal lattice, the cells are identical only geometrically, that is, 

they are all a parallelepiped with edges a  𝑎 ∗, 𝑏  ∗, 𝑐  ∗. Each node of 

the reciprocal lattice 𝑟∗(ℎ𝑘𝑙) defines a plane (hkl) [2]. The 

structural amplitude of X-ray (electron, neutron) radiation F (h, k, l) 

determines the “weight” of the reciprocal lattice site. Translation in 

the reciprocal lattice with F (h, k, l) is absent. The choice of the cell 

itself is connected with the crystal lattice, that is, the origin of 

coordinates in the reciprocal lattice and the direction of the axes 

𝑥∗, 𝑦∗, 𝑧∗ cannot change, since they depend on 𝑎  𝑏   𝑐  . Any number 

of atoms with coordinates (xyz) with values in the range (0 ÷ 1) can 

be located in a crystal cell. Any point in the space of the crystal has 

a point homologous to it in the cell, taken as the initial one.  

 There can not be any nodes of the lattice in the cell of the 

reciprocal lattice, as their coordinates in the rapper 𝑎 ∗, 𝑏  ∗, 𝑐  ∗ are 

integers. The "weight" of the node of the reciprocal lattice can be 

zero. In this case, 𝑥∗, 𝑦∗, 𝑧∗ to pass non-null node and cell must be 

constructed so that all its vertices are non-zero "weight". Periods of 

such super cell as its volume will be multiples  𝑎∗, 𝑏∗, 𝑐∗, 𝑉∗  (2-5). 

 

3. Reciprocal lattice of crystals I, F, C (AB) – 

types 
 

The “weight” of the reciprocal lattice node is described by the 

value of the structural amplitude, which is calculated by the 

formula: 

 

𝐹 ℎ, 𝑘, 𝑙 =  𝑓𝑗 (𝑥𝑦𝑧)𝑗𝑒x𝑝2𝜋𝑖 (ℎ𝑥𝑗 + 𝑘𝑦𝑗 + 𝑙𝑧𝑗 )𝑁
𝑗 =1 ,   (8) 

where 𝑓𝑗  –  atomic scattering amplitude of the j-th atom (tabular 

value). N is the number of atoms in the cell, the volume-centered 

cell of the crystal lattice (type I) [3]. The basis of the I-type cell is 

the parallelepiped to which the nodes (000) belong; (1⁄2 1⁄2 1⁄2), 

that is, any point (any atom) with coordinates (xyz) must have a 

homologous point (atom) with coordinates (x + 1⁄ (2,) y + 1⁄2, z + 

1⁄2). Therefore, the structural amplitude (8) for the I – type of the 

lattice takes the view: 

𝐹 ℎ, 𝑘, 𝑙 =  𝑓𝑗 (𝑥𝑦𝑧)𝑗   𝑒𝑥𝑝2𝜋𝑖  ℎ𝑥𝑗 + 𝑘𝑦𝑗 + 𝑙𝑧𝑗  +𝑁 2 
𝑗 =1

𝑒𝑥𝑝2𝜋𝑖 ℎ(𝑥𝑗 + 1
2  + 𝑘(𝑦𝑗 + 1

2  + 𝑙(𝑧𝑗 + 1
2 ) ] =

1 + 𝑒𝑥𝑝2𝜋𝑖 (
ℎ𝑘𝑙

2
)  𝑓𝑗 𝑒𝑥𝑝2𝜋𝑖𝑁 2 

𝑗=1 (ℎ𝑥𝑗 + 𝑘𝑦𝑗 + 𝑙𝑧𝑗 ),     (9) 

The multiplier made for the sum sign is: 

 

 1 + 𝑒𝜋𝑖  ℎ+𝑘+𝑙  = [1 + 𝑒𝑖𝜋  𝑐],                                    (10) 

 

A constant integer C can take two values C = 2n (even), C = 2n 

+ 1 (odd). Consequently, all nodes of the I – type reciprocal lattice 

with an odd sum of indices have zero “weight”. The reciprocal 

lattice in this case has the view (Figure 3). 

507

INTERNATIONAL SCIENTIFIC JOURNAL "MACHINES. TECHNOLOGIES. MATERIALS." WEB ISSN 1314-507X; PRINT ISSN 1313-0226

YEAR XII, ISSUE 12, P.P. 506-509 (2018)



 

Fig. 3. - A super cell of a reciprocal lattice of a crystal with a 
lattice of type I. ○ - nonzero nodes 

Figure 3 shows the nodes closest to the origin of coordinates the 

reciprocal lattice with a nonzero "weight". The same figure shows a 

cell with 𝑎∗𝑏∗𝑐∗ but it has four nodes with a non-zero “weight” 000, 

110, 101, 011. A super cell whose vertices have a non-zero 

“weight” has periods. 

 
 
 

 
 𝑎𝑠

∗ = 2𝑎∗ = 2
𝑎 

𝑏𝑠
∗ = 2𝑏∗ = 2

𝑏 

𝑐𝑠
∗ = 2𝑐∗ = 2

𝑐 

𝑉𝑠
∗ = 8𝑉∗

                                                                 (11) 

That is, the volume-centered cell in the reciprocal space is 

described by a face-centered super cell with dimensions (11). 

The face-centered crystal lattice is characterized by the Bravais 

basis 000; 1/2 1/2 0; 1/2 0 1/2; 0 1/2 1/2. 

The formula of the structural amplitude for such crystals is  

𝐹 ℎ, 𝑘, 𝑙 =  𝑓𝑗 (𝑥𝑦𝑧)𝑗  𝑒𝑥𝑝2𝜋𝑖  ℎ𝑥𝑗 + 𝑘𝑦𝑗 + 𝑙𝑧𝑗  +𝑁 4 
𝑗 =1

𝑒𝑥𝑝2𝜋𝑖 ℎ(𝑥𝑗 + 1
2  + 𝑘(𝑦𝑗 + 1

2 ) + 𝑙𝑧𝑗  ] +

𝑒𝑥𝑝2𝜋𝑖 ℎ(𝑥𝑗 + 1
2  + 𝑘𝑦𝑗 + 𝑙(𝑧𝑗 + 1

2 ) ] +

𝑒𝑥𝑝2𝜋𝑖[ℎ𝑥𝑗  + 𝑘(𝑦𝑗 + 1
2 ) + 𝑙(𝑧𝑗 + 1

2 ) ] = (1 +

𝑒𝜋𝑖  ℎ+𝑘 + 𝑒𝜋𝑖  ℎ+𝑙 + 𝑒𝜋𝑖 (𝑘+𝑙)   𝑓𝑗 𝑒𝑥𝑝2𝜋𝑖𝑁 4 
𝑗=1 (ℎ𝑥𝑗 +

𝑘𝑦𝑗 + 𝑙𝑧𝑗 )                                                                            (12) 

The multiplier in front of the sum sign (four-term) is equal to 

zero if the indices (hkl) have different parity: two even ones one odd 

and vice versa. If (hkl) have the same parity, then this four-member 

is equal to four. Therefore, the reciprocal lattice nodes with indices 

of mixed parity have zero “weight” (Figure 4). 

 

Fig. 4. - A super cell of a reciprocal lattice of a crystal with an F – 
type cell 

Figure 4 shows the reciprocal lattice cell, which has only two 

nodes with a nonzero "weight" (000); (111). The super cell has 

indices 000, 111, that is, the super cell refers to the volume-centered 

Bravais cell. The relationships between the supercell parameters of 

the reciprocal crystal lattice with an F – type lattice and the 

parameters of the reciprocal and crystal lattice cells are the same as 

in conditions (11). 

The Bravais basis of C – type cells is 000; 1/2 1/2 0. Therefore, 

the structural amplitude of such crystals is: 

𝐹 ℎ, 𝑘, 𝑙 =  𝑓𝑗 (𝑥𝑦𝑧)𝑗  𝑒𝑥𝑝2𝜋𝑖  ℎ𝑥𝑗 + 𝑘𝑦𝑗 + 𝑙𝑧𝑗  +𝑁 2 
𝑗 =1

𝑒𝑥𝑝2𝜋𝑖 ℎ(𝑥𝑗 + 1
2  + 𝑘(𝑦𝑗 + 1

2 ) + 𝑙𝑧𝑗 ] = (1 +

𝑒𝜋𝑖  ℎ+𝑘 )  𝑓𝑗 𝑒𝑥𝑝2𝜋𝑖𝑁 2 
𝑗 =1 (ℎ𝑥𝑗 + 𝑘𝑦𝑗 + 𝑙𝑧𝑗 ),               (13) 

which allows us to state that 𝐹(ℎ𝑘𝑙) ≠ 0 only for an even sum of 

indices hk, the restrictions are not imposed on l. The super cell of 

the reciprocal lattice of such crystals is shown in Figure 5. 

 

Fig. 5. - Super cell of a reciprocal lattice of a crystal with a C – 

type cell 

It can be seen from the figure that the cell of the reciprocal 

lattice has nodes with zero “weight” in its vertices. 

The relations between the parameters of the super cell and the 

parameters of the cells of the reciprocal and crystal lattices are: 

 
 
 

 
 𝑎𝑠

∗ = 2𝑎∗ = 2
𝑎 

𝑏𝑠
∗ = 2𝑏∗ = 2

𝑏 

𝑐𝑠
∗ = 𝑐∗ = 1

𝑐 

𝑉𝑠
∗ = 4𝑉∗

                                                                  (14)  

It is obvious that the P – type cells of the crystal lattice in the 

reciprocal lattice are also characterized by a P – type cell, since, 

when calculating F (hkl), there are no restrictions on the indices. 

For more complex structures, these relations between the cells 

of a crystal and the super cells of the reciprocal lattice may break. 

This can be illustrated by the example of diamond. 

 

4. Reciprocal lattice of diamond crystals 
 

Diamond crystals are described by the Fd3m space group. 

Figure 6 (a) shows a polyhedral model of the structure of a diamond 

as a junction of tetrahedra and a cell of its crystal lattice (b). 

a  b 

Fig. 6. - Articulation scheme of carbon tetrahedra (a), a lattice cell 

of a diamond crystal (b) 

The diamond cell consists of two face-centered cubes that are 

shifted relative to each other along the main diagonal of the cube for 
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translation (1⁄4 1⁄4 1⁄4). The coordinates of carbon atoms in the 

diamond cell are shown in table 1. 

 

Table 1. - Crystallographic coordinates of atoms in a diamond cell 
(Figure 6) 

№ 1 2 3 4 

xyz 000 1
2 

1
2 0 1

2 0 1
2  0 1

2 
1

2  

№ 5 6 7 8 

xyz 1
4 

1
4 

1
4  3

4 
3

4 
1

4  3
4 

1
4 

3
4  1

4 
3

4 
3

4  

 

The period of crystal lattice of diamond and minimum atomic 

distance have values: 𝑎 = 3,57Å, (𝑟𝑐−𝑐) = 1,54Å. 

Taking into account the coordinates of atoms (table 1), the 

structural amplitude (8) will take the following from after the 

transformation: 

 

𝐹 ℎ𝑘𝑙 = 𝑓𝑐  1 + 𝑒𝑥𝑝𝜋𝑖 ℎ + 𝑘 + 𝑒𝑥𝑝𝜋𝑖 ℎ + 𝑙 +
𝑒𝑥𝑝𝜋𝑖(𝑘+𝑙)1+𝑒𝑥𝑝𝜋𝑖(ℎ+𝑘+𝑙)2,                               (15) 

 

The first bracket in this expression is not equal to zero for 

indices with the same parity. If the indices are even, but their sum 

equals 4n + 2, then F (hkl) = 0. Therefore, the first nonzero nodes 

lying on the coordinate axes of the reciprocal lattice for the Super 

Diamond Cell are as follows: 400; 040; 004. Indices (hkl) in the 

coordinate system 𝑎  𝑏   𝑐   all odd, then F (hkl) ≠ 0. If the indices are 

even, then their sum should be divisible by 4 without any balance. 

Super cell cube reciprocal lattice diamond has a period 𝑎𝑠
∗ =

4𝑎∗ =
4

𝑎
 . All faces centered: 220; 202; 022. 

Reciprocal lattice nodes with all odd indices are inside the super 

cell and have indices: 111; 311; 131; 331; 113; 313; 133; 333 

Nodes with odd indices form a cube with the edge (𝑎′)(∗) =

2𝑎∗ =
2

𝑎
 , which is inside the super cell of the reciprocal lattice of 

the diamond. 

If a trio of nodes of the reciprocal lattice (x∗𝑦∗𝑧∗)1  are chosen 

as a structural element and the translation 𝑥𝑡
∗ = 𝑥1

∗ + 4 is taken into 

account, then we get the distribution of nodes in table 2. 

Table 2 – Bringing the super cell of the reciprocal lattice of the 
diamond to the super cell F – type 

(𝑥∗𝑦∗𝑧∗)1 

000 

111 

1 1 1  

220 

331 

3 3 1  

202 

313 

3 1 3  

022 

133 

1 3 3  

(𝑥∗𝑦∗𝑧∗)𝑡  

000 

111 

333 

220 

331 

113 

202 

313 

131 

022 

133 

311 

 

Each vertex node is located in the center of the tetrahedron from 

the nodes of the reciprocal lattice. Node 000 lies in the tetrahedron 

of the nodes 111 1 1 1 ≡ 333, 11 1 ≡ 133, 1 11 ≡ 313. The other 

nodes of the first super cell are coordinated by nodes with odd 

indices on the similar scheme. 

Nodes with odd indices are also found in tetrahedrins, the 

vertices of which are nodes in the vertices of the super cell and the 

three nodes of the coordinating face. 

A tetrahedron that coordinates nodes with even indices can be 

considered as "some super knot" of the reciprocal lattice. In this 

case, it is obvious that the Super diamond Cell refers to the F-type. 

 

5. Conclusion 
 

When studying the diffraction of X-rays it is assumed that when 

the node of the reciprocal lattice is on the sphere of the Ewald, there 

will be a reflected beam (reflex) on the radius-vector of the node of 

this sphere. The intensity of the reflex determines the "weight" of 

the node, which is equal to the structural amplitude. Depending on 

the type of cell of the Bravais lattice of the crystal, some reciprocal 

lattice units have a zero weight. In the vertices of the reciprocal 

lattice cell must be nodes with 𝐹 ℎ𝑘𝑙 ≠0. This condition is only 

for P-type lattice. 

Cell of the reciprocal lattice is based on the rapper 𝑎∗ =
𝑟∗ 100 , 𝑏∗ = 𝑟∗ 010 , 𝑐∗ = 𝑟∗ 001 . Such a cell can not include 

the nodes of the lattice , as their indices would have fractional 

values. It is shown that the assertion that the cell F–type lattice of a 

crystal is characterized by the cell I –type in the reciprocal lattice 

wrong. These types in the reciprocal lattice belong to super cell with 

parameters to an integer the number 𝑎𝑗
∗. 

For the analysis of crystals with non primitive cells, the concept 

of super cells must be used. 

For example, the diamond crystal shows that the lattice of F–

type in the reciprocal space of the super cell is also related to the F–

type. 

Super cell of the reciprocal lattice of the crystals  with Bravais 

cells of crystals with a lattice of C–type have a volume 𝑉𝑠
∗ = 4𝑉∗for 

F– and I–type 𝑉𝑠
∗ = 8𝑉∗, for diamond 𝑉𝑠

∗ = 64𝑉∗, where 𝑉∗– cell 

volume of the reciprocal lattice with parameters 𝑎∗𝑏∗𝑐∗. 
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