Influence of carbon nanotubes and graphene on thermal and electromagnetic properties of PLA nanocomposites

  • 1 of Mechanics (OLEM), Bulgarian Academy of Sciences, Bulgaria
  • 2 Institute for Nuclear Problems, Belarusian State University, Belarus


This work investigate electromagnetic and thermal properties of poly(lactic) acid-based composites with graphene nanoplates (GNP) and multiwalled carbon nanotubes (MWCNTs), produced by solution blending method. It was found that the MWCNT carbon nanotubes are an effective filler for both absorption and reflection of electromagnetic waves in the GHz and THz frequency domains. The higher aspect ratio of carbon nanotubes, compared to industrial MWCNT, is the cause of better electromagnetic characteristics of nanocomposites prepared by solution blending method (SB). The DSC analysis of the samples shows that the glass transition is around 60oC, followed by cold crystallization with enthalpy and melting temperature around 150oC. The TGA analysis show, that the thermal stability of PLA polymer is improved by addition of 6% MWCNTs and GNP.



  1. Saeidlou S., Huneault M.A, Li H., Park C.B., “Poly (lactic acid) crystallization” Prog. Polym. Sci. 37 (2012) 1657e1677.
  2. Savaris M., Santos V.D., Brandalise R.N., “Influence of different sterilization processes on the properties of commercial poly(lactic acid)”, Mater. Sci. Eng. C 69 (2016) 661e667.
  3. Yang F., Murugan R., Ramakrishna S., Wang X., Ma Y.X., Wang S., “Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering”, Biomaterials 25 (2004) 1891e1900.
  4. Aou K., Hsu S.L., Kleiner L.W., Tang F.-W., “Roles of conformational and configurational defects on the physical aging of amorphous poly(lactic acid)”, J. Phys. Chem. B 111 (2007) 12322e12327.
  5. Tsuji H., Fukui I. “ Enhanced thermal stability of poly (lactide) s in the melt by enantiomeric polymer blending”, Polymer 44 (2003) 2891e2896.
  6. Spinelli G, Lamberti P, Tucci V, Ivanova R, Tabakova S, Ivanov E, Kotsilkova K, Cimmino S, Maio R, Silvestre C, “Rheological and electrical behaviour of nanocarbon/poly(lactic) acid for 3d printing applications” , addma_2018_122.
  7. Zhang W., Dehghani-Sanij A.A, and Blackburn R. S. “Carbon based conductive polymer composites”, J. Mater. Sci. 42 (2007) 3408-3418.
  8. Cha J., Jun G. H., Park J. K, Kim J. C., Ryu H. J., Hong S. H., “Improvement of modulus, strength and fracture toughness of CNT/Epoxy nanocomposites through the functionalization of carbon nanotubes”, Compos. Part B 129 (2017) 169-179.
  9. Vertuccio L., Guadagno L., Spinelli G., Russo S., Iannuzzo G., “Effect of carbon nanotube and functionalized liquid rubber on mechanical and electrical properties of epoxy adhesives for aircraft structures”, Compos. Part B 129 (2017) 1-10.
  10. Guadagno L., Raimondo M., Vittoria V., Vertuccio L., Naddeo C., Russo S., De Vivo B., Lamberti P., Spinelli G. and Tucci V., “Development of epoxy mixtures for application in aeronautics and aerospace” RSC Adv. 4 (2014) 15474-15488.
  11. Qin F. and Brosseau C., “ A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles” ,J. Appl. Phys. 111, 061301 (2012).
  12. Kuzhir P., Paddubskaya A., “Epoxy composites filled with high surface area-carbon fillers: Optimization of electromagnetic shielding, electrical, mechanical, and thermal properties”, Plyushch A. et al., J. Appl. Phys. 114, 164304 (2013).
  13. Bryning M.B, Islam M.F, Kikkawa J.M, Yod A.G, “Preparation and Microwave Absorbing Characteristics of MultiWalled Carbon Nanotube/Chiral-Polyaniline Composites”, Adv Mater, 17, 9 (2005).

Article full text

Download PDF