The main characteristic of the powder metallurgical materials that distinguishes them from the summer ones is the presence in them of residual porosity. For this reason, the processes of their thermochemical treatment are differ significantly from those occurring at saturation of dense ones. In the present paper the impact of technological processes such as boronizing, chromizing, siliconizing, carburizing, borocarburizing, etc., is monitored on the kinetics of diffusion layer growth in powder materials with a porosity of 5÷35%. The specimens of iron powders NC 100.24 and those doped with 2% Cu were subjected to study. The samples were pressed with an effort of 200 ÷ 800MPa and sintered for 0.5h at 1150°C in dissociated NH3 medium. Thermochemical treatment was conducted at 950°C for 4 hours in semi-permeable saturation media. Graphical dependencies for varying the thickness of diffusion coatings in different thermochemical treatment modes are presented, depending on the porosity of the saturation materials.