ТіН2-based multi-layered titanium matrix composites fabricated using blended elemental powder metallurgy

  • 1 G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine


The high specific strength of Ti-based alloys and composites makes them highly requested materials in various structural applications. However, reinforcement of the alloys with hard particles generally lowers the values of toughness and plasticity of material. A satisfactory combination of plastic and strength can be achieved by formation of layered structures comprising of two and more layers of different materials with different chemical compositions within individual layers. The multi-layer materials allow controlling the mechanical properties of the individual layers by changing microstructure and chemical composition within each layer specifically. In the present study, a cost-efficient process of fabrication of Ti-based multi-layer composites using blended elemental powder metallurgy (BEPM) and TiH2 powder is proposed. Two and three-layered composites based on titanium or Ti-6Al-4V alloy and their metal-matrix composites (MMC) with TiC and TiB were fabricated. Multi-layered samples reinforced by TiC were successfully sintered due to very close shrinkage of adjacent layers. Shrinkage values of layers reinforced by TiB were lower than those for the Ti-alloy, which led to delamination of layered structures, distortion of shape, and cracking. We can control shrinkage in individual layers by means of optimizing the powder size, that allows to obtain multi-layer titanium matrix composites reinforced by TiB with well-balanced mechanical properties.



  1. G.Lutjering, J.C.Williams. Titanium. Berlin Heidelberg: Springer, Second edition, 2007. p. 385.
  2. J. S. Montgomery, M.G.H. Wells, Titanium armor applications in combat vehicles, JOM (2001) vol. 53, р. 29.
  3. О.М. Ивасишин, А.П. Шпак, Д.Г. Саввакин. Экономичная технология получения титановых деталей методом порошковой металлургии. «Титан», 2006. №1. C.31- 39.
  4. O.M. Ivasishin, D.G. Savvakin, V.S. Moxson, V.A. Duz, C. Lavender. Production of Titanium Components from Hydrogenated Titanium Powder: Optimization of Parameters. Ti2007 Science and Technology: Proceedings of 11th World Conference on Titanium (Kyoto, Japan) / Eds. M.Niinomi, S.Akiyama et al. – Sendai: Japan Institute of Metals, 2007. Vol.1. p.757-760.
  5. Г.А. Баглюк, О.М. Iвасишин, O.O. Стасюк, Д.Г. Саввакiн. Вплив компонентного складу шихти на структуру та властивості спечених титаноматричних композитів з високомодульними сполуками. Порошкова металургія, 2017. №1/2. С. 59-69.
  6. G.А. Bagliuk, O.О. Stasiuk. Microstructure and mechanical properties of P/M titanium matrix composites reinforced with TiB. International Scientific Journal Materials Science. Non-Equilibrium Phase Transformations, 2018. Vol.4. p.133-138.
  7. D.G. Savvakin, S.V. Prikhodko, M.V. Matviychuk, O.M. Ivasishin, Fabrication of Layered Ti6Al-4V Plates by Cold Isostatic Pressing Powder Metallurgy for Anti-Ballistic Protection Application, ITA-2017 Conference, 8-11 Oct 2017, Miami, USA.
  8. O.M. Ivasishin, V.T. Cherepin, V.N. Kolesnik, N.M. Humenyak. Automatichesky dilatometrichesky complex. Pribory i tekhnika experimenta 3, 2010, p. 147–151.
  9. Д.Г. Саввакін, М.М. Гуменяк, М.В. Матвійчук, О.Г. Моляр. Роль водню під час спікання титанових порошків. Фізико-хімічна механіка матеріалів, 2011. C. 72-81.
  10. M. Qian. Cold compaction and sintering of titanium and its alloys for near-netshape and preform fabrication. Int. Journal of Powder Metallurgy 46 (5), 2010. p. 29–44.
  11. J.R. Davis (Ed), Tensile Testing, 2nd Edition, 2004, ASM International. p. 283.

Article full text

Download PDF