• 1 Faculty of Technology and Metallurgy –University Ss Cyril and Methodius, Skopje, R.N. Macedonia


The subject of this study is leaching process of nickel-bearing laterite ore from Ržanovo, R. Macedonia. The influence of sulfuric acid concentration (0.5, 1 and 3 M H2SO4) on the extracted Ni (%, wt.) was studied. The leaching process intensified by magnetic stirring at different temperatures (298, 323, 348 and 363 K) in the time interval of 120 min. was performed. The results were used for kinetic analysis of the leaching process. It was found that for 3 M H2SO4, the best fitting has shown the Jander and Ginstling-Braunshtein models, which point out that limiting step of the process is diffusion. Activation energy was calculated to be 42,67 kJ·mol–1 (Jander model) 40,28 kJ·mol–1 (Ginstling – Brousthein model), which confirm the diffusion controlled process.



  1. J.R. Davis (ed.) (2000) ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys, ASM International®.
  2. F. Habashi (1997) Handbook of Extractive Metallurgy, Volume 1, WILEY-VCH.
  3. A. D. Dalvi, W. G. Bacon; R. C. Osborne (2004) PDAC 2004 International Convention,Trade Show & Investors Exchange.
  4. R.G. McDonald, B.I. Whittington (2008) Atmospheric acid leaching of nickel laterites review Part I. Sulphuric acid technologies, Hidrometallurgy, Vol. 91, p. 35-55.
  5. R.G. McDonald, B.I. Whittington (2008) Atmospheric acid leaching of nickel laterites review. Part II. Chloride and bio-technologies, Hidrometallurgy, Vol. 91 p. 56-69.
  6. B. Ma, C. Wang, W. Yang, B. Yang, Y. Zhang (2013) Selective Pressure Leaching of Fe (II)-rich Limonitic Laterite Ores from Indonesia Using Nitric Acid, Miner. Eng., Vol. 45, p. 151-158.
  7. S. Sahu, N. C. Kavuri, M. Kundu (2011) Dissolution kinetics of nickel laterite ore using different secondary metabolic acids, Braz. J. Chem. Eng., Vol. 28, p. 251-258.
  8. A. Pawlowska, Z. Sadowski (2017) Influence of chemical and biogenic leaching on surface area and particle size of laterite ore, Physicochem. Probl. Miner. Process., Vol. 53, p. 869-877.
  9. P. Paunović, G. Načevski, A. Petrovski, A. Tomova, A. Grozdanov, A. T. Dimitrov (2019) Kinetic analysis of ultrasound leaching of nickel laterite ore, Bul. Chem, Com., Volume 51, Special issue D, p.12-18.
  10. O. Levenspiel (1999) Chemical Reaction Engineering, John Wiley & Sons, Inc., New York.
  11. W. D. Spenser, B. Topley (1929) Chemical kinetics of the system Ag2CO3⇌ Ag2O + CO2, J. Chem. Soc., Vol. 27, p. 2633- 2650.
  12. A. M. Ginstling, B. I. Braunshtein (1950) Concerning the diffusion kinetics of reaction in spherical particles, J. Appl. Chem. USSR, Vol. 23, p. 1327-1338.
  13. W. Jander (1927) Reaktionen im festen Zustande bei höheren Temperaturen. Reaktionsgeschwindigkeiten endotherm verlaufender Umsetzungen, Z anorg allg Chem (in German) Vol. 163 p. 1-30.
  14. G. Rinn, F. Fetting (1982) The leaching of a serpentinite with hydrochloric acid, Erzmetall, Vol. 35, p. 432-436.
  15. S. Stopić, B. Friedrich, R. Fuchs (2003) Sulphuric Acid Leaching of the Serbian Nickel Lateritic Ore, Erzmetall, Vol. 56, p. 198-203.
  16. T. Agacayak, V. Zedef (2012) Dissolution kinetics of a lateritic nickel ore in sulphuric acid medium, Acta Montanistica Slovaca, Vol. 17, p. 33-41.

Article full text

Download PDF