• 1 G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine; National Technical University of Ukrаinе "lgоr Sikorsky Kyiv Polytechnic"
  • 2 G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine
  • 3 National Technical University of Ukrаinе "lgоr Sikorsky Kyiv Polytechnic"


Titanium Ti-6-4 alloy coated with Ni-base material was obtained via Blended Elemental Powder Metallurgy approach by sintering a mixture of laminated powders. Microstructure and phase composition of obtained laminated material were studied, and formation of Ti2Ni phase and multicomponent phase (Ti, Ni, Al, V, C) with E93 crystal cell of space group 227: Fd-3m was established. The intermetallic melt deeply permeated into the Ti-6-4 material at sintering temperature (1250°C) higher than Ti2Ni melting point (942°C), and a dense gradient structure formed. The microstructure, phase composition and properties of obtained gradient material are discussed in detail.



  1. Lutjering, G. Titanium. Publisher. Springer, 2003, Р.289 (Lutjering G., J.C. Williams).
  2. Tian, Y.S. Research progress on laser surface modification of titanium alloys. – Applied Surface Science, 2005, iss.1/2, V.242, P.177–184, DOI: 10.1016/j.apsusc.2004.08.011 (Tian Y.S., C.Z. Chen, S.T. Q.H. Li, Huo).
  3. Polmear, I. Light Alloys: From Traditional Alloys to Nanocrystals, Fifth Edition. Imprint: Butterworth-Heinemann, 2017, P. 544, Hardcover ISBN: 9780080994314, eBook ISBN: 9780080994307 (Polmear, I., D. Stjohn, J.F. Nie, M. Qian.).
  4. Shi, Y. Thermal stability of hierarchical and multiphase nanolaminated TiZrAlV. –Materials & Design, 2015, V.88, P.115– 122. DOI: 10.1016/j.matdes.2015.08.143 (Shi,Y., M. Li, G. Zhang, D. Guo, L. Wang, B. Wei, X. Li, X. Zhang).
  5. Wang, Y.M. High tensile ductility in a nanostructured metal, Nature, V. 419(6910), 2002 P.912-915. DOI: 10.1038/nature01133 (Wang Y.M., M.W. Chen, F.H. Zhou, E. Ma).
  6. Markovsky, P.E. Preparation and properties of ultrafine (submicron) structure titanium alloys, Materials Science and Engineering, A 203 (1-2), 1995, L1-L4. DOI 10.1016/0921- 5093(95)09866-6.
  7. Погребняк, А.Д. Структура и свойства твѐрдых и сверхтвѐрдых нанокомпозитных покрытий, УФН, №179 (1), 2009, с. 35–64. DOI: 10.3367/UFNr.0179.200901b.0035 (Погребняк А.Д., А.П. Шпак, Н.А. Азаренков, В.М. Береснев).
  8. Poate, J.M. Surface Modification and Alloying by Laser, Ion, and Electron Beams, Publisher Springer, 1983, Р. 401, US ISBN 978-1-4613-3733-1. DOI: 10.1007/978-1-4613-3733-1 (Poate, J.M., G. Foti, D.C. Jacobson).
  9. Barsoum, M.W. The MN+1 AXN Phases: A new class of solids: Thermodynamically stable nanolaminates. – Progress in Solid State Chemistry, 2000, V. 28, P. 201-281. DOI:10.1016/S0079-6786(00)00006-6
  10. Sun, Z.M. Progress in research and development on MAX phases: a family of layered ternary compounds. – International Materials Reviews, 2011, V. 56, Р. 143-166. DOI: 10.1179/1743280410Y.0000000001
  11. Клопотов, А.А. Кристаллогеометрические и кристаллохимические закономерности образования бинарных и тройных соединений на основе титана и никеля. Томск, Издaтельство Томского политехнического университета, 2011, 312 с. ISBN 978-5-98298-874-4 (Клопотов А.А., А.И. Потекаев, Э.В. Козлов, Ю.И. Тюрин, К.П. Арефьев, Н.О. Солоницина, В.Д. Клопотов.).
  12. Li, M. Simultaneously enhancing fracture toughness and strength in a hierarchical nanolamella-structured alloy. – Materials Science and Engineering, August 2014, V. 612, 26 P. 1-6. DOI: 10.1016/j.msea.2014.06.026 (Li M., D Guo, Q Zhang, T Ma, Y Shi, G Zhang).
  13. Nei, J. Gaseous Phase and Electrochemical Hydrogen Storage Properties of Ti50Zr1Ni44X5 (X = Ni, Cr, Mn, Fe, Co, or Cu) for Nickel Metal Hydride Battery Applications. – Batteries, 2016, V.2, P.1-25. DOI:10.3390/batteries2030024 (Nei J., K. Young.)
  14. Department of Chemistry, Birkbeck College, University of London. URL:
  15. Yurko, G. A. Crystal Structure of Ti2Ni. – Acta Cryst. 1959, V.12, P. 909-911. DOI:10.1107/S0365110X59002559 (Yurko G. A., J. W. Barton, J. G. Parr)
  16. Nash Philip. Phase diagrams of binary nickel alloys. ASM International; 1991. p. 394. ISBN-10: 0871703653, ISBN-13: 978- 0871703651.
  17. Ivasishin, O.M. Synthesis of alloy Ti–6Al–4V with low residual porosity by a powder metallurgy method. – Powder Metall Met Ceram, 2002, V.41, P.382–90. DOI:10.1023/A:1021117126537. (Ivasishin O.M., D.G. Savvakin, F. Froes, V.C. Mokson, K.A. Bondareva)
  18. Evans, A.G. Fracture Toughness Determination by Indentation. – Journal of the American Ceramic Society, 7-8 July 1976, V.59, P. 371–372. DOI:10.1111/j.1151-2916.1976.tb10991.x (Evans A.G., E.A. Cherles)
  19. Quinn, G.D. Fracture Toghness of Ceramics by the Vickers Indentation Crack Length Method: A Critical Review. – Ceramic Engineering and Science Proceedings, 2006, V.27 [3], P. 45-62. DOI: 10.1002/9780470291313.ch5.
  20. Laves F. Crystal structure and atomic size. In Theory of alloy phases, adited by the American Society for Metal. Clevlend, Ohio. 1956, P.124-198.
  21. Юм-Розери У. Факторы, влияющие на стабильность металлических фаз, Устойчивость в металлах и сплавах: Перевод с английского. − М.: Мир, 1970, c.179-199.

Article full text

Download PDF