Exergy analysis of low-pressure condensate heating system from cogeneration power plant

  • 1 Faculty of Engineering, University of Rijeka, Croatia
  • 2 University of Zadar, Maritime Department, Croatia


The paper presents an exergy analysis of condensate low-pressure heating system of a cogeneration power plant, which consists of one heater, one condensate pump and one pressure reduction valve. The entire system is investigated at three different plant loads. Regardless of the plant load, the highest exergy destruction is noted for the condensate heater (between 416.41 kW and 771.46 kW), after which follows pressure reduction valve with exergy destruction between 57.43 kW and 120.61 kW. Exergy destruction of condensate pump is almost negligible at any plant load and therefore condensate pump has the highest exergy efficiency (between 75.86 % and 77.08 %). Exergy efficiency of condensate heater is between 56.13 % and 59.29 %, while pressure reduction valve has the lowest exergy efficiency of all three analyzed system components and is between 36.98 % and 48.42 %.



  1. Adibhatla, S., Kaushik, S. C.: Energy and exergy analysis of a super critical thermal power plant at various load conditions under constant and pure sliding pressure operation, Applied Thermal Engineering 73, p. 49-63, 2014. (doi:10.1016/j.applthermaleng.2014.07.030)
  2. Medica-Viola, V., Pavković, B., Mrzljak, V.: Numerical model for on-condition monitoring of condenser in coal-fired power plants, International Journal of Heat and Mass Transfer 117, p. 912–923, 2018. (doi:10.1016/j.ijheatmasstransfer.2017.10.047)
  3. Mrzljak, V., Prpić-Oršić, J., Senčić, T.: Change in Steam Generators Main and Auxiliary Energy Flow Streams During the Load Increase of LNG Carrier Steam Propulsion System, Scientific Journal of Maritime Research 32, p. 121-131, 2018. (doi:10.31217/p.32.1.15)
  4. Kowalczyk, T., Ziółkowski, P., Badur, J.: Exergy Losses in the Szewalski Binary Vapor Cycle, Entropy 17, p. 7242-7265, 2015. (doi:10.3390/e17107242)
  5. Koroglu, T., Sogut, O. S.: Conventional and Advanced Exergy Analyses of a Marine Steam Power Plant, Energy 163, p. 392- 403, 2018. (doi:10.1016/j.energy.2018.08.119)
  6. Ahmadi, G. R., Toghraie, D.: Energy and exergy analysis of Montazeri Steam Power Plant in Iran, Renewable and Sustainable Energy Reviews 56, p. 454–463, 2016. (doi:10.1016/j.rser.2015.11.074)
  7. Burin, E. K., Vogel, T., Multhaupt, S., Thelen, A., Oeljeklaus, G., Gorner, K., Bazzo, E.: Thermodynamic and economic evaluation of a solar aided sugarcane bagasse cogeneration power plant, Energy 117, Part 2, p. 416-428, 2016. (doi:10.1016/j.energy.2016.06.071)
  8. Mrzljak, V., Poljak, I., Medica-Viola, V.: Dual fuel consumption and efficiency of marine steam generators for the propulsion of LNG carrier, Applied Thermal Engineering 119, p. 331–346, 2017. (doi:10.1016/j.applthermaleng.2017.03.078)
  9. Poljak, I., Orović, J., Mrzljak, V.: Energy and Exergy Analysis of the Condensate Pump During Internal Leakage from the Marine Steam Propulsion System, Scientific Journal of Maritime Research 32 (2), p. 268-280, 2018. (doi:10.31217/p.32.2.12)
  10. Mrzljak, V., Poljak, I., Medica-Viola, V.: Efficiency and losses analysis of low-pressure feed water heater in steam propulsion system during ship maneuvering period, Scientific Journal of Maritime Research 30, p. 133-140, 2016. (doi:10.31217/p.30.2.6)
  11. Mrzljak, V., Poljak, I., Žarković, B.: Exergy Analysis of Steam Pressure Reduction Valve in Marine Propulsion Plant on Conventional LNG Carrier, International Journal of Maritime Science & Technology "Our Sea" 65(1), p. 24-31, 2018. (doi:10.17818/NM/2018/1.4)
  12. Uysal, C., Kurt, H., Kwak, H. Y.: Exergetic and thermoeconomic analyses of a coal-fired power plant, International Journal of Thermal Sciences 117, p. 106-120, 2017. (doi:10.1016/j.ijthermalsci.2017.03.010)
  13. Mrzljak, V., Senčić, T., Žarković, B.: Turbogenerator Steam Turbine Variation in Developed Power: Analysis of Exergy Efficiency and Exergy Destruction Change, Modelling and Simulation in Engineering 2018. (doi:10.1155/2018/2945325)
  14. Mrzljak, V., Poljak, I., Medica-Viola, V.: Energy and Exergy Efficiency Analysis of Sealing Steam Condenser in Propulsion System of LNG Carrier, International Journal of Maritime Science & Technology "Our Sea" 64 (1), p. 20-25, 2017. (doi:10.17818/NM/2017/1.4)
  15. Mrzljak, V., Poljak, I., Medica-Viola, V.: Thermodynamical analysis of high-pressure feed water heater in steam propulsion system during exploitation, Shipbuilding 68 (2), p. 45-61, 2017. (doi:10.21278/brod68204)
  16. Orović, J., Mrzljak, V., Poljak, I.: Efficiency and Losses Analysis of Steam Air Heater from Marine Steam Propulsion Plant, Energies 2018, 11 (11), 3019 (doi:10.3390/en11113019)
  17. Kanoğlu, M., Çengel, Y.A., Dincer, I.: Efficiency Evaluation of Energy Systems, Springer Briefs in Energy, Springer, 2012. (doi:10.1007/978-1-4614-2242-6)
  18. Mrzljak, V., Poljak, I., Mrakovčić, T.: Energy and exergy analysis of the turbo-generators and steam turbine for the main feed water pump drive on LNG carrier, Energy Conversion and Management 140, p. 307–323, 2017. (doi:10.1016/j.enconman.2017.03.007)
  19. Mrzljak, V., Poljak, I., Prpić-Oršić, J.: Exergy analysis of the main propulsion steam turbine from marine propulsion plant, Shipbuilding Vol. 70., No. 1, p. 59-77, 2019. (doi:10.21278/brod70105)
  20. Lemmon, E.W., Huber, M.L., McLinden, M.O.: NIST reference fluid thermodynamic and transport properties REFPROP, version 9.0, User’s guide, Colorado, 2010.

Article full text

Download PDF