MACHINES

Exergy analysis of steam condenser at various loads during the ambient temperature change

  • 1 Faculty of Engineering, University of Rijeka, Rijeka, Croatia
  • 2 University of Zadar, Maritime Department, Zadar, Croatia

Abstract

The paper presents an exergy analysis of steam condenser at three different loads and in the ambient temperature range between 5 °C and 20 °C. An increase in the condenser load and increase in the ambient temperature resulted with an increase in steam condenser exergy destruction (exergy power losses). At low load, condenser exergy destruction is for the order of magnitude lower if compared to middle and high condenser loads. Decrease of the condenser load and decrease of the ambient temperature resulted with an increase in condenser exergy efficiency. The highest steam condenser exergy efficiencies are obtained at the lowest observed ambient temperature of 5 °C and amounts 81.47 % at low condenser load, 76.10 % at middle condenser load and 74.54 % at high condenser load. From the exergy viewpoint, the optimal condenser operating regime is low load and the lowest possible ambient temperature.

Keywords

References

  1. Mitrović, D., Ţivković, D., Laković, M. S.: Energy and Exergy Analysis of a 348.5 MW Steam Power Plant, Energy Sources, Part A, 32, p. 1016–1027, 2010. (doi:10.1080/15567030903097012)
  2. Aljundi, I. H.: Energy and exergy analysis of a steam power plant in Jordan, Applied Thermal Engineering 29, p. 324–328, 2009. (doi:10.1016/j.applthermaleng.2008.02.029)
  3. Koroglu, T., Sogut, O. S.: Conventional and Advanced Exergy Analyses of a Marine Steam Power Plant, Energy 163, p. 392- 403, 2018. (doi:10.1016/j.energy.2018.08.119)
  4. Kowalczyk, T., Ziółkowski, P., Badur, J.: Exergy Losses in the Szewalski Binary Vapor Cycle, Entropy 17, p. 7242-7265, 2015. (doi:10.3390/e17107242)
  5. Erdem, H.H., Akkaya, A.V., Cetin, B., Dagdas, A., Sevilgen, S.H., Sahin, B., Teke, I., Gungor, C., Atas, S.: Comparative energetic and exergetic performance analyses for coal-fired thermal power plants in Turkey, International Journal of Thermal Sciences 48, p. 2179–2186, 2009. (doi:10.1016/j.ijthermalsci.2009.03.007)
  6. Burin, E. K., Vogel, T., Multhaupt, S., Thelen, A., Oeljeklaus, G., Gorner, K., Bazzo, E.: Thermodynamic and economic evaluation of a solar aided sugarcane bagasse cogeneration power plant, Energy 117, Part 2, p. 416-428, 2016. (doi:10.1016/j.energy.2016.06.071)
  7. Medica-Viola, V., Pavković, B., Mrzljak, V.: Numerical model for on-condition monitoring of condenser in coal-fired power plants, International Journal of Heat and Mass Transfer 117, p. 912–923, 2018. (doi:10.1016/j.ijheatmasstransfer.2017.10.047)
  8. Poljak, I., Orović, J., Mrzljak, V.: Energy and Exergy Analysis of the Condensate Pump During Internal Leakage from the Marine Steam Propulsion System, Scientific Journal of Maritime Research 32 (2), p. 268-280, 2018. (doi:10.31217/p.32.2.12)
  9. Mrzljak, V., Poljak, I., Medica-Viola, V.: Efficiency and losses analysis of low-pressure feed water heater in steam propulsion system during ship maneuvering period, Scientific Journal of Maritime Research 30, p. 133-140, 2016. (https://hrcak.srce.hr/171454)
  10. Mrzljak, V., Poljak, I., Medica-Viola, V.: Energy and Exergy Efficiency Analysis of Sealing Steam Condenser in Propulsion System of LNG Carrier, International Journal of Maritime Science & Technology "Our Sea" 64 (1), p. 20-25, 2017. (doi:10.17818/NM/2017/1.4)
  11. Ahmadi, G. R., Toghraie, D.: Energy and exergy analysis of Montazeri Steam Power Plant in Iran, Renewable and Sustainable Energy Reviews 56, p. 454–463, 2016. (doi:10.1016/j.rser.2015.11.074)
  12. Mrzljak, V., Senčić, T., Ţarković, B.: Turbogenerator Steam Turbine Variation in Developed Power: Analysis of Exergy Efficiency and Exergy Destruction Change, Modelling and Simulation in Engineering 2018. (doi:10.1155/2018/2945325)
  13. Mrzljak, V., Prpić-Oršić, J., Poljak, I.: Energy Power Losses and Efficiency of Low Power Steam Turbine for the Main Feed Water Pump Drive in the Marine Steam Propulsion System, Journal of Maritime & Transportation Sciences 54 (1), p. 37-51, 2018. (doi:10.18048/2018.54.03)
  14. Mrzljak, V., Poljak, I.: Energy Analysis of Main Propulsion Steam Turbine from Conventional LNG Carrier at Three Different Loads, International Journal of Maritime Science & Technology "Our Sea" 66 (1), p. 10-18, 2019. (doi:10.17818/NM/2019/1.2)
  15. Tan, H., Shan, S., Nie, Y., Zhao, Q.: A new boil-off gas re-liquefaction system for LNG carriers based on dual mixed refrigerant cycle, Cryogenics 92, p. 84–92, 2018. (doi:10.1016/j.cryogenics.2018.04.009)
  16. Mrzljak, V., Poljak, I., Mrakovčić, T.: Energy and exergy analysis of the turbo-generators and steam turbine for the main feed water pump drive on LNG carrier, Energy Conversion and Management 140, p. 307–323, 2017. (doi:10.1016/j.enconman.2017.03.007)
  17. Mrzljak, V., Poljak, I., Medica-Viola, V.: Dual fuel consumption and efficiency of marine steam generators for the propulsion of LNG carrier, Applied Thermal Engineering 119, p. 331–346, 2017. (doi:10.1016/j.applthermaleng.2017.03.078)
  18. Bühler, F., Van Nguyen, T., Kjær Jensen, J., Müller Holm, F., Elmegaard, B.: Energy, exergy and advanced exergy analysis of a milk processing factory, Energy 162, p. 576-592, 2018. (doi: 10.1016/j.energy.2018.08.029)
  19. Lorencin, I., Anđelić, N., Mrzljak, V., Car, Z.: Exergy analysis of marine steam turbine labyrinth (gland) seals, Scientific Journal of Maritime Research 33 (1), p. 76-83, 2019. (doi:10.31217/p.33.1.8)
  20. Mrzljak, V., Blecich, P., Anđelić, N., Lorencin, I.: Energy and Exergy Analyses of Forced Draft Fan for Marine Steam Propulsion System during Load Change, Journal of Marine Science and Engineering 7 (11), 381, 2019. (doi:10.3390/jmse7110381)
  21. Lemmon, E.W., Huber, M.L., McLinden, M.O.: NIST reference fluid thermodynamic and transport properties-REFPROP, version 9.0, User’s guide, Colorado, 2010.
  22. Lorencin, I., Anđelić, N., Mrzljak, V., Car, Z.: Genetic Algorithm Approach to Design of Multi-Layer Perceptron for Combined Cycle Power Plant Electrical Power Output Estimation, Energies 12 (22), 4352, 2019. (doi:10.3390/en12224352)
  23. Lorencin, I., Anđelić, N., Mrzljak, V., Car, Z.: Marine Objects Recognition Using Convolutional Neural Networks, International Journal of Maritime Science & Technology "Our Sea" 66 (3), p. 112-119, 2019. (doi:10.17818/NM/2019/3.3)

Article full text

Download PDF