Advanced of The Deposition of Thin Films BaTiO3 – BaSnO3 on Monolitic Layered Materials.

  • 1 Institute of Metal Science, Equipment and Technologies with Hydro- and Aerodynamics Centre ―Acad. A. Balevski‖, Bulgarian Academy of Sciences
  • 2 Bulgarian Academy of Sciences, Institute of Solid State Physics


The aim of the present work is to study the characteristics and conditions of obtaining thin films in the BaTiO3–BaSnO3 system, deposited by the sol-gel method on monolithic multilayer samples. In laboratory conditions, the structure, phase composition, micromorphology, electrophysical parameters of the prepared experimental samples were studied. The existing possibilities for optimizing the applied technological regime for the synthesis and surface deposition of thin-layer coatings with set characteristics have been analyzed.



  1. M. Okuyama, Y. Ishibashi (Eds.), Ferroelectric Thin Films, Basic Properties and Device Physics for Memory Applications, Part of the book series: Topics in Applied Physics (TAP, volume 98) Publisher: Springer, 2005, Book.
  2. G. Friedbacher, H. Bubert, Surface and Thin Film Analysis: A Compendium of Principles, Instrumentation, and Applications (English Edition) 2nd Edition, Publisher: Wiley-VCH; 2nd edition (2011), Book.
  3. J. Zhu, X. Zhu, H. Liu, J. Xing, Thin Film Physics And Devices: Fundamental Mechanism, Materials And Applications For Thin Films, Publisher: World Scientific (2021), Book.
  4. G. Song, Y. Wang, D. Q. Tan, A review of surface roughness impact on dielectric film properties, IET Nanodielectr., 5, 2022, pp.1–23.
  5. S. M. Waita, B. O. Aduda, J. M. Mwabora, C. G. Granqvist, S. Lindquist, G. A. Niklasson, A. Hagfeldt, G. Boschloo, Electron transport and recombination in dye sensitized solar cells fabricated from obliquely sputter deposited and thermally annealed TiO2 films, J. Electroanal. Chem., 605, 2007, pp. 151-156.
  6. P. Shinde, S. B. Sadale, P. S. Patil, P. N. Bhosale, A. Brüger, M. Neumann-Spallart, C.H. Bhosale, Properties of spray deposited titanium dioxide thin films and their application in photoelectrocatalysis, Solar Energy Materials and Solar Cells, 92, 3, 2008, 283-290.
  7. D. Wang, G.P. Bierwagen, Sol gel coatings on metals for corrosion protection, Progress in Org Coat, 64, 2009, 327-338.
  8. G. R. Salazar-Banda, S. R. Moraes, A. J. Motheo, S. A. S. Machado, Antic-orrosive cerium-based coatings prepared by the sol–gel method, J. Sol-Gel Sci. Technol. 52 (2009) pp. 415–423.
  9. A. J. Lopez, J. Rams, and A. Urena, ―Sol-gel coatings of low sintering temperature for corrosion protection of ZE41 magnesium alloy‖, Surface and Coatings Technology,vol.205, No. 17-18, pp. 4183-4191, 2011.
  10. E. Marin, L. Guzman, A. Lanzutti, W. Ensinger, L. Fedrizzi, Multilayer Al2O3/TiO2 Atomic Layer Deposition coatings for the corrosion protection of stainless steel, Thin Solid Films, 522, 2012, 283-288.
  11. E. Atanassova, A. Paskaleva, D. Spassov, "Doped Ta2O5 and mixed HfO2-Ta2O5 films for dynamic memories application", Microelectron. Reliab. 51, 2012, pp.. 642-650.
  12. F.-C. Chiu, P.-W. Li, and W.-Y. Chang, ―Reliability characteristics and conduction mechanisms in resistive switching memory devices using ZnO thin films,‖ Nanoscale Research Letters, Vol. 7, Article ID 178, 9 pages, 2012.
  13. F. C. Chiu, W. C. Shih, J. J. Feng, ―Conduction mechanism of resistive switching films in MgO memory devices,‖ Journal of Applied Physics, Vol. 111, No. 9, Article ID 094104, 5 pages, 2012.
  14. M. Fedel, E. Callone, M. Fabbian, F. Deflorian, S. Dirè, ―Influence of Ce3+ doping on molecular organization of Si-based organic/inorganic sol-gel layers for corrosion protection‖, Applied Surface Science 414, 2017, pp. 82–91.
  15. G. Mutafchieva, ―Technological development of lighting fixtures in the field of silicate design‖, Collection reports, Design & applied arts - Sofia, NAA, 2018, pp. 138-144. 24.
  16. G. Mutafchieva. ―Мodern trends and development of lighting fixtures in the field of silicate design‖, PhD thesis for the award of the educational and scientific degree "Doctor", NAA, Bibliography 87, 2020, p. 215.
  17. D. Q. Tan, Differentiation of roughness and surface defect impact on dielectric strength of polymeric thin films. IET Nanodielectr. 3(1), 2020, pp. 28–31.
  18. G. Song, D. Q. Tan, Atomic layer deposition for polypropylene film engineering—a review. Macromol. Mater. Eng. 305(6), 2020, 2000127.
  19. M. Aleksandrova, B. Jivov, L. Lakov. „Summary of sol-gel synthesis of materials with electronic applications―. International Scientific Journal Materials Science. Non-Equilibrium Phase Transformations, Year VI, Issue 3, 2020, Scienticic Technical Union of Mechanical Engineering INDUSTRY 4.0, 2020, pp. 83- 85.
  20. V. Petkov, R. Valov, Effects of diamond nanoparticles on the microstructure, hardness and corrosion resistance of chromium coatings, American Journal of Chemical Engineering, Vol. 8, 6, 2020, pp. 125-130.
  21. V. Petkov, R. Valov, S. Simeonova, M. Kandeva, Characteristics and Properties of Chromium Coatings with Diamond Nanoparticles Deposited Directly on Aluminum Alloys, Archives of Foundry Engineering, 4, 2020, pp. 115-120.
  22. Nasehnejad, M., Nabiyouni, G.: Studying magnetic properties and surface roughness evolution of Ag‐ Co electrodeposited films. J. Magn. Magn Mater. 490, 2019, 165501.
  23. Ping-Che Lee, Yu-Liang Hsiao, Jit Dutta, Ruey-ChiWang, Shih-WenTseng, Chuan-PuLiu, Development of porous ZnO thin films for enhancing piezoelectric nanogenerators and force sensors, Nano Energy, Vol. 82, 2021, 105702.
  24. E. György, G. Socol, E. Axente, I.N. Mihailescu, C. Ducu, S. Ciuca, Anatase phase TiO2 thin films obtained by pulsed laser deposition for gas sensing applications, Appl. Surf. Sci., 247, 1, 2005, pp. 429-433.
  25. P. Eiamchai, P. Chindaudom, A. Pokaipisit, P. Limsuwan, A spectroscopic ellipsometry study of TiO2 thin films prepared by ion-assisted electron-beam evaporation, Curr. Appl. Phys., 9, 2009, pp. 707-712.
  26. H. Fan, L. Liu, Optimizing design of the microstructure of sol-gel derived BaTiO3 ceramics by artificial neural networks, J. Electroceram., 22, 2009, pp. 291-296.
  27. Wang J., Li Ch., Xu B., Basic Principle, Advance and Current Application Situation of Sol-Gel Method, Chemical industry and engineering, 2009, 26(3), pp. 273-277.
  28. M. Sreemany, A. Bose, S. Sen, A study on structural, optical, electrical and microstructural properties of thin TiOx films upon thermal oxidation: Effect of substrate temperature and oxidation temperature, Physica B: Condensed Matter, 405, 1, 2010, 85-93.
  29. A. Ghasemi, T. Shahrabi, A. A. Oskuie, H. Hassannehad, S. Sanjabi, Effect of heat treatment on corrosion properties of sol–gel titania–ceria nanocomposite coating, J. Alloys Comp., Vol. 504, pp. 237-242, 2010.
  30. S. K. Tiwari, M. Tripathi, R. Singh, Electrochemical behavior of zirconia based coatings on mild steel prepared by sol– gel method, Corros. Sci. 63 (2012) pp. 334–341.
  31. L. Curkovic, H. O. Curkovic, S. Salopek, M.M. Renjo, S. Šegota. Enhancement of corrosion protection of AISI 304 stainless steel by nanostructured sol–gel TiO2 films. Corrosion Science, Vol. 77, 2013, pp. 176-184.
  32. G. Ruhi, O. P. Modi, I. B. Singh, ―Hot Corrosion Behavior of sol-gel Nano Structured Zirconia Coated 9Cr1Mo Ferritic Steel in Alkali Metal Chlorides and Sulphates Deposit Systems at High Temperatures‖, Journal of Surface Engineered Materials and Advanced Technology, 2013, 3, 55-60.
  33. D. Guergova, E. Stoyanova, D. Stoychev, I. Avramova, P. Stefanov, Self-healing effect of ceria electrodeposited thin films on stainless steel in aggressive 0.5 mol/L NaCl aqueous solution, J. Rare Earths, 33 (2015) 1212.
  34. S. I. Yordanov, A. D. Bachvarova-Nedelcheva, R. S. Iordanova, I. D. Stambolova, Sol-gel Synthesis and Properties of Sm Modified TiO2 Nanopowders, Bulgarian Chemical Communications 50, 2018, pp. 42-48.
  35. A. Bachvarova-Nedelcheva, S. Yordanov, R. Iordanova, I. Stambolova, Comparative Study of Sol-Gel Derived Pure and Nd-doped TiO2 Nanopowders, Journal of Chemical Technology and Metallurgy 53(6), 2018, pp. 1167-1172.
  36. Wai Kian Tan, Hiroyuki Muto, Go Kawamura, Zainovia Lockman, Atsunori Matsuda, Nanomaterial Fabrication through the Modification of Sol–Gel Derived Coatings, Review, Nanomaterials, 11, 181, 2021, pp. 1-30.
  37. M.A. Aegerter, „Ferroelectric thin coatings―, Journal of Non-Crystalline Solids 151, 1992, pp. 195-202.
  38. G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, G. A. Rizzi, PECVD of amorphous TiO2 thin films: Effect of growth temperature and plasma gas composition, Thin Solid Films, 371, 2000, pp. 126-131.
  39. F. Pfuner, L. Degiorgi, T. I. Baturina, V. M. Vinokur, and M. R. Baklanov, ―Optical properties of TiN thin films close to the superconductor-insulator transition,‖ New J. Phys. 11(11), 113017 (2009).
  40. J. Zhai, C. Gao, X. Yao, Z. Xu, H. Chen, "Enhanced dielectric tunability properties of Ba(ZrxTi1-x)O3 thin films using seed layers on Pt/Ti/SiO2/Si substrates." Ceramics International: 34(4), 2008, pp. 905-910.
  41. A. Paskaleva, M. Lemberger, A. J. Bauer, W. Weinreich, J. Heitmann, E. Erben, U. Schröder, L. Oberbeck "Influence of the amorphous/crystalline phase of Zr1-xAlxO2 high-k layers on the capacitance performance of MIM stacks", J. Appl. Phys. 106 (2009) 054107.
  42. H. M. Abb El-Lateef, M. M. Khalaf, Corrosion resistance of ZrO2-TiO2 nanocomposite multilayer thin films coated on carbon steel in hydrochloric acid solution, Mater. Characteriz., 108, 2015, 29-41.
  43. A. Paskaleva, A. J. Bauer, M. Lemberger, S. Zürcher, Different current conduction mechanisms through thin high-k HfxTiySizO films due to the varying Hf to Ti ratio, J. Appl. Phys., 95 (10), 2004, pp. 5583-5590.
  44. G. Deng, Z. He, P. Muralt, Physical aspects of colossal dielectric constant material CaCu3Ti4O12 thin films, Journal of Applied Physics 105 (8) (2009) 084106.
  45. Y. Cao, C. Zhou, Thickness dependence of surface roughness and magnetic properties of FeNiCr thin films. J. Magn. Magn. Mater. 333, 2013, pp. 1–7.

Article full text

Download PDF