MATERIALS
Geopolymers based on natural zeolite clinoptilolite with addition of metakaolin
- 1 Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences (IMC-BAS) Sofia, Bulgaria
Abstract
Geopolymers based on natural zeolite clinoptilolite and addition of up to 50% metakaolin were synthesized using binary sodium/potassium alkali activator. The influence of metakaolin addition was evaluated on apparent density, water absorption, relative mass loss after watering and microstructure (XRD) of the prepared geopolymers. The addition of metakaolin greatly influenced the physical and mechanical properties of the obtained geopolymers. Minimal/optimal metakaolin addition was estimated to 30% in the respect of sufficient strength (11 MPa) and the high price of metakaolin. The resulted geopolymer based on natural zeolite and metakaolin (30%) contained residual unreacted clinoptilolite which could be beneficial for properties of future geopolymer products. Potential applications of obtained geopolymer-clinoptilolite agglomerates are: waste or radioactive water decontamination, passive cooling systems, plasters in residential buildings, etc.
Keywords
References
- ]. B. Li, N. Haneklaus, Reducing CO2 emissions in G7 countries: The role of clean energy consumption, trade openness and urbanization, Energy Reports. 8 (2022) 704–713.
- N. Müller, J. Harnisch, A blueprint for a climate friendly cement industry, Gland WWF Lafarge Conserv. Partnersh. (2008).
- J. Davidovits, Solid-phase synthesis of a mineral blockpolymer by low temperature polycondensation of alumino-silicate polymers: Na-poly (sialate) or Na-PS and characteristics, in: Proc. IUPAC Symp. Long-Term Prop. Polym. Polym. Mater. Stock. Sweden, 1976.
- J. Davidovits, Geopolymer cement a review, published in geopolymer science and technics, Technical paper\# 21, Geopolymer Institute Library, (2013).
- M. Lahoti, K.H. Tan, E.-H. Yang, A critical review of geopolymer properties for structural fire-resistance applications, Constr. Build. Mater. 221 (2019) 514–526. https://doi.org/10.1016/J.CONBUILDMAT.2019.06.076.
- T. Bakharev, Resistance of geopolymer materials to acid attack, Cem. Concr. Res. 35 (2005) 658–670.
- W.G. Valencia Saavedra, D.E. Angulo, R. de Gutiérrez, Fly ash slag geopolymer concrete: Resistance to sodium and magnesium sulfate attack, J. Mater. Civ. Eng. 28 (2016) 4016148.
- H.W. Nugteren, V.C.L. Butselaar-Orthlieb, M. Izquierdo, High strength geopolymers produced from coal combustion fly ash, Glob. NEST J. 11 (2009) 155–161.
- A. Nikolov, Characterization of geopolymer based on fayalite waste and metakaolin with standard consistence, Comptes Rendus l’Acad_emie Bulg. Des Sci. 74 (2021) 1461–1468. DOI:10.7546/CRABS.2021.10.05.
- A. Nikolov, R. Titorenkova, N. Velinov, Z. Delcheva, Characterization of a novel geopolymer based on acid-activated fayalite slag from local copper industry, Bulg. Chem. Commun. 50 (2018) 54–61.
- J.L. Provis, J.S.J. Van Deventer, Geopolymers: structures, processing, properties and industrial applications, Elsevier, 2009.
- Z. Ji, Y. Pei, Bibliographic and visualized analysis of geopolymer research and its application in heavy metal immobilization: A review, J. Environ. Manage. 231 (2019) 256–267.
- W.S. Wise, MINERALS | Zeolites☆, in: Ref. Modul. Earth Syst. Environ. Sci., Elsevier, 2013. https://doi.org/10.1016/B978-0-12-409548-9.02906-7.
- Ullmann’s encyclopedia of industrial chemistry, Verlag Chemie, 1991.
- N. Mansouri, N. Rikhtegar, H.A. Panahi, F. Atabi, B.K. Shahraki, Porosity, characterization and structural properties of natural zeolite-clinoptilolite-as a sorbent, Environ. Prot. Eng. 39 (2013).
- N. Lihareva, O. Petrov, L. Dimowa, Y. Tzvetanova, I. Piroeva, F. Ublekov, A. Nikolov, Ion exchange of Cs+ and Sr 2+ by natural clinoptilolite from bi-cationic solutions and XRD control of their structural positioning, J. Radioanal. Nucl. Chem. 323 (2020) 1093–1102.
- N. Popov, T. Popova, J. Rubio, S.R. Taffarel, Use of natural and modified zeolites from Bulgarian and Chilian deposits to improve adsorption of heavy metals from aqueous solutions, Bull. Mineral. Petrol. Geochemistry. 49 (2012) 83–93.
- Д.Т. Рустамова, Э.А. Дж, Ф.М. Насири, С.А. Байрамова, С.A. Алиев, С.И. Мамедов, К.А. Мансурова, Цеолиты- условия образования в природе, свойства и применение / Zeolites--formation conditions in the nature, properties and applications, 2018, 1000 Kopii. 67.
- C. Colella, M. de’ Gennaro, R. Aiello, Use of zeolitic tuff in the building industry, Rev. Mineral. Geochemistry. 45 (2001) 551–587.
- A. Nikolov, I. Rostovsky, H. Nugteren, Geopolymer materials based on natural zeolite, Case Stud. Constr. Mater. (2017). https://doi.org/10.1016/j.cscm.2017.03.001.
- C. Villa, E.T. Pecina, R. Torres, L. Gómez, Geopolymer synthesis using alkaline activation of natural zeolite, Constr. Build. Mater. 24 (2010) 2084–2090.
- S. Özen, B. Alam, Compressive strength and microstructural characteristics of natural zeolite-based geopolymer, Period. Polytech. Civ. Eng. 62 (2018) 64–71.
- А. Николов, Геополимери на основа естествен зеолит за приложение в строителството. състав, структура, свойства, София, 2018, ISBN 978-619-188-201-4.
- A. Nikolov, Geopolymers based on Bulgarian raw materials – preliminary studies, Int. Sci. J. “Machines, Technol. Mater. XIII (2019) 197–199.
- A. Nikolov, I. Rostovsky, Sodium-silicate geopolymers based on natural zeolite – clinoptilolite, Comptes Rendus L’Academie Bulg. Des Sci. 70 (2017).
- A. Nikolov, B. Barbov, E. Tacheva, Geopolymer mortars based on natural zeolite., Rev. Bulg. Geol. Soc. 82 (2021).
- A. Nikolov, H. Nugteren, I. Rostovsky, Optimization of geopolymers based on natural zeolite clinoptilolite by calcination and use of aluminate activators, Constr. Build. Mater. 243 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118257.
- A. Nikolov, Geopolymers based on metakaolin – literature review and prelimenary studies, VSU, Proceeding, ISSN 1314- 071Х,2018, Sofia, 2018.
- J.R. Gasca-Tirado, A. Manzano-Ramirez, P.A. Vazquez- Landaverde, E.I. Herrera-Diaz, M.E. Rodriguez-Ugarte, J.C. Rubio-Ávalos, V. Amigó-Borrás, M. Chávez-Páez, Ion-exchanged geopolymer for photocatalytic degradation of a volatile organic compound, Mater. Lett. 134 (2014) 222–224.
- N. Ariffin, M.M.A.B. Abdullah, M.R.R.M.A. Zainol, M.F. Murshed, M.A. Faris, R. Bayuaji, Review on adsorption of heavy metal in wastewater by using geopolymer, in: MATEC Web Conf., 2017: p. 1023.
- K. Okada, A. Ooyama, T. Isobe, Y. Kameshima, A. Nakajima, K.J.D. MacKenzie, Water retention properties of porous geopolymers for use in cooling applications, J. Eur. Ceram. Soc. 29 (2009) 1917–1923.
- Z. Emdadi, N. Asim, M.A. Yarmo, R. Shamsudin, Investigation of more environmental friendly materials for passive cooling application based on geopolymer, APCBEE Procedia. 10 (2014) 69–73.