Energy evaluation of a steam turbine from solar-based combined cycle power plant

  • 1 Faculty of Engineering, University of Rijeka, Croatia
  • 2 Department of maritime sciences, University of Zadar, Croatia


In this paper is performed energy evaluation of steam turbine from the solar-based combined cycle power plant which includes analysis of each cylinder and the whole turbine. Steam turbine has three cylinders – high, intermediate and low pressure cylinders (HPC, IPC and LPC). Observed turbine is interesting because it possesses steam cooling before its expansion through the last cylinder (LPC). Due to unknown steam mass flow rates through each cylinder, for the evaluation are used specific variables. The highest specific work is obtained in LPC, while the lowest specific work is obtained in IPC. The highest loss of a specific work is obtained in LPC (29.8 kJ/kg), followed by HPC (24.5 kJ/kg), while the lowest loss of a specific work is obtained for the IPC (19.5 kJ/kg). Regardless of higher loss in specific work, HPC has higher energy efficiency in comparison to IPC (95.08% in comparison to 95.02%), while the lowest energy efficiency of all cylinders has LPC (94.92%). For the whole observed steam turbine loss of a specific work is equal to 73.8 kJ/kg, while the energy efficiency of the whole turbine is 95.00%.



  1. Noroozian, A., Mohammadi, A., Bidi, M., & Ahmadi, M. H. (2017). Energy, exergy and economic analyses of a novel system to recover waste heat and water in steam power plants. Energy conversion and management, 144, 351-360. (doi:10.1016/j.enconman.2017.04.067)
  2. Elhelw, M., Al Dahma, K. S., & el Hamid Attia, A. (2019). Utilizing exergy analysis in studying the performance of steam power plant at two different operation mode. Applied Thermal Engineering, 150, 285- 293. (doi:10.1016/j.applthermaleng.2019.01.003)
  3. Mrzljak, V., & Poljak, I. (2019). Energy Analysis of Main Propulsion Steam Turbine from Conventional LNG Carrier at Three Different Loads. NAŠE MORE: znanstveno-stručni časopis za more i pomorstvo, 66(1), 10-18. (doi:10.17818/NM/2019/1.2)
  4. Burin, E. K., Vogel, T., Multhaupt, S., Thelen, A., Oeljeklaus, G., Gorner, K., & Bazzo, E. (2016). Thermodynamic and economic evaluation of a solar aided sugarcane bagasse cogeneration power plant. Energy, 117, 416-428. (doi:10.1016/
  5. Ibrahim, T. K., Mohammed, M. K., Awad, O. I., Abdalla, A. N., Basrawi, F., Mohammed, M. N., ... & Mamat, R. (2018). A comprehensive review on the exergy analysis of combined cycle power plants. Renewable and Sustainable Energy Reviews, 90, 835-850. (doi:10.1016/j.rser.2018.03.072)
  6. Lorencin, I., AnĎelić, N., Mrzljak, V., & Car, Z. (2019). Genetic Algorithm Approach to Design of Multi-Layer Perceptron for Combined Cycle Power Plant Electrical Power Output Estimation. Energies, 12(22), 4352. (doi:10.3390/en12224352)
  7. Ameri, M., Mokhtari, H., & Sani, M. M. (2018). 4E analyses and multi-objective optimization of different fuels application for a large combined cycle power plant. Energy, 156, 371-386. (doi:10.1016/
  8. Moran, M. J., Shapiro, H. N., Boettner, D. D., & Bailey, M. B. (2010). Fundamentals of engineering thermodynamics. Wiley.
  9. Mrzljak, V., Kudláček, J., Baressi Šegota, S., & Medica-Viola, V. (2021). Energy and Exergy Analysis of Waste Heat Recovery Closed- Cycle Gas Turbine System while Operating with Different Medium. Pomorski zbornik, 60(1), 21-48.(doi:10.18048/2021.60.02)
  10. Lorencin, I., AnĎelić, N., Mrzljak, V., & Car, Z. (2019). Multilayer Perceptron approach to Condition-Based Maintenance of Marine CODLAG Propulsion System Components. Pomorstvo, 33(2), 181-190. (doi:10.31217/p.33.2.8)
  11. Kostyuk, A., & Frolov, V. (1988). Steam and gas turbines. Mir Publishers.
  12. Sorgulu, F., & Dincer, I. (2018). Thermodynamic analyses of a solar-based combined cycle integrated with electrolyzer for hydrogen production. International Journal of Hydrogen Energy, 43(2), 1047- 1059. (doi:10.1016/j.ijhydene.2017.09.126)
  13. Škopac, L., Medica-Viola, V., & Mrzljak, V. (2020). Selection Maps of Explicit Colebrook Approximations according to Calculation Time and Precision. Heat Transfer Engineering, 1-15. (doi:10.1080/01457632.2020.1744248)
  14. Cangioli, F., Chatterton, S., Pennacchi, P., Nettis, L., & Ciuchicchi, L. (2018). Thermo-elasto bulk-flow model for labyrinth seals in steam turbines. Tribology international, 119, 359-371. (doi:10.1016/j.triboint.2017.11.016)
  15. Medica-Viola, V., Mrzljak, V., AnĎelić, N., & Jelić, M. (2020). Analysis of Low-Power Steam Turbine With One Extraction for Marine Applications. NAŠE MORE: znanstveni časopis za more i pomorstvo, 67(2), 87-95. (doi:10.17818/NM/2020/2.1)
  16. Lemmon, E. W., Huber, M. L., & McLinden, M. O. (2010). NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties (REFPROP), version 9.0, National Institute of Standards and Technology. R1234yf. fld file dated December, 22, 2010.
  17. Medica-Viola, V., Baressi Šegota, S., Mrzljak, V., & Štifanić, D. (2020). Comparison of conventional and heat balance based energy analyses of steam turbine. Pomorstvo, 34(1), 74-85. (doi:10.31217/p.34.1.9)
  18. Nandini, M., Sekhar, Y. R., & Subramanyam, G. (2021). Energy analysis and water conservation measures by water audit at thermal power stations. Sustainable Water Resources Management, 7(1), 1-24. (doi:10.1007/s40899-020-00487-4)
  19. Mrzljak, V., Prpić-Oršić, J., & Poljak, I. (2018). Energy Power Losses and Efficiency of Low Power Steam Turbine for the Main Feed Water Pump Drive in the Marine Steam Propulsion System. Pomorski zbornik, 54(1), 37-51. (doi:10.18048/2018.54.03)
  20. Mrzljak, V., Poljak, I., & Medica-Viola, V. (2017). Dual fuel consumption and efficiency of marine steam generators for the propulsion of LNG carrier. Applied Thermal Engineering, 119, 331- 346. (doi:10.1016/j.applthermaleng.2017.03.078)
  21. Aljundi, I. H. (2009). Energy and exergy analysis of a steam power plant in Jordan. Applied thermal engineering, 29(2-3), 324-328. (doi:10.1016/j.applthermaleng.2008.02.029)
  22. AnĎelić, N., Mrzljak, V., Lorencin, I., & Baressi Šegota, S. (2020). Comparison of Exergy and Various Energy Analysis Methods for a Main Marine Steam Turbine at Different Loads. Pomorski zbornik, 59(1), 9-34. (doi:10.18048/2020.59.01.)
  23. Ahmadi, G. R., & Toghraie, D. (2016). Energy and exergy analysis of Montazeri steam power plant in Iran. Renewable and Sust. Energy Reviews, 56, 454-463. (doi:10.1016/j.rser.2015.11.074)
  24. Mrzljak, V., Prpić-Oršić, J., & Senčić, T. (2018). Change in steam generators main and auxiliary energy flow streams during the load increase of LNG carrier steam propulsion system. Pomorstvo, 32(1), 121-131. (doi:10.31217/p.32.1.15)
  25. Dincer, I., & Rosen, M. A. (2012). Exergy: energy, environment and sustainable development. Newnes.
  26. Mrzljak, V., AnĎelić, N., Lorencin, I., & Sandi Baressi Šegota, S. (2021). The influence of various optimization algorithms on nuclear power plant steam turbine exergy efficiency and destruction. Pomorstvo, 35(1), 69-86. (doi:10.31217/p.35.1.8)
  27. Ebrahimgol, H., Aghaie, M., Zolfaghari, A., & Naserbegi, A. (2020). A novel approach in exergy optimization of a WWER1000 nuclear power plant using whale optimization algorithm. Annals of Nuclear Energy, 145, 107540. (doi:10.1016/j.anucene.2020.107540)
  28. AnĎelić, N., Baressi Šegota, S., Lorencin, I., Poljak, I., Mrzljak, V., & Car, Z. (2021). Use of Genetic Programming for the Estimation of CODLAG Propulsion System Parameters. Journal of Marine Science and Engineering, 9(6), 612. (doi:10.3390/jmse9060612)
  29. Baressi Šegota, S., AnĎelić, N., Kudláček, J., & Čep, R. (2019). Artificial neural network for predicting values of residuary resistance per unit weight of displacement. Pomorski zbornik, 57(1), 9-22. (doi:10.18048/2019.57.01)

Article full text

Download PDF