Improving the accuracy of electron-beam processing of small thickness optical plates

  • 1 Cherkasy State Technological University, Cherkasy, Ukraine


The article presents the results of increasing the accuracy of the operating parameters of the electron flow (power density, speed of electron-beam processing) in obtaining optical plates of small thickness as components of optical instrumentation devices. It is shown that flexible control of such parameters of tape electron flow allows to significantly (1.5-2 times) increase the accuracy and quality of surface processing of small thickness (up to millimeters) optical silicate plates (glass K8) by low-energy electron flow. The implementation of such management was carried out using an information-measuring system, the general principles and functional scheme of which are given in this article. The proposed system allows with high accuracy (relative error does not exceed 4.5%) and efficiency (the time between the moment of
determining the parameters of the electron flow to the moment of its formation with the adjusted values of these parameters does not exceed 12-17 μs).



  1. T.C. Ng, S.Y. Lau, M. Ghobakhloo, M. Fathi, et al., Sustainability, 14, pp. 4327 (2022). DOI: 10.3390/su14074327.
  2. E.Skoryna, V.Medyanyk, M.Bondarenko, І.Bondarenko, S.Bilokin, V.Antoniuk, Innovations, 1 (Year VI), pp.30-33 (2018).
  3. R.Gaidash, S.Ralchenko, V.Medyanyk, M.Bondarenko, Machines. Technologies. Materials, 10 (Year XII), pp.398-401. (2018).
  4. I.V.Yatsenko, V.S.Antonyuk, V.A.Vashchenko, et al., J. Nano- Electron. Phys. 11, 02014 (2019). DOI: 10.21272/jnep.11(2).02014.
  5. H.Bluhm, et al., Electron Beam Devices for Materials Processing and Analysis. In: J.A.Eichmeier, M.K.Thumm (eds). Vacuum Electronics, (Springer, Berlin, Heidelberg, 2008). DOI: 10.1007/978-3-540-71929-8_4.
  6. A.Kowalik, K.Góra, Z.Jaroszewicz, A.Kolodziejczyk. Microelectronic Engineering. 77, pp. 347-357 (2005). DOI: 10.1016/j.mee.2004.12.036.
  7. V.Barabash, I.Zhaivoronok, Y.Kovalenko, V.Antonyuk, Machines. Technologies. Materials, 3, pp.106-109 (2020).
  8. V.A.Vashchenko, I.V.Yazenko, Yu.I.Kovalenko, et al. Semiconductor physics quantum electronics & Optoelectronics, 4 (22), pp. 444-451 (2019).
  9. S.Lyon, Shreir's Corrosion, Dec. 2010, pp. 2151-2156. DOI: 10.1016/B978-044452787-5.00105-0.
  10. G.V. Kanashevich, The 7th World Congress on Recovery, Recycling and Reintegration & China International 3R Exhibition, (Beijing, China, 25-29 Sept. 2005).
  11. J.L.Cronin, IEE Proc., 1 (128). 19-32 (1981).
  12. I.Yatsenko, V.Antoniuk, M.Bondarenko, V.Vashchenko, Intern. scien.-tech. conf. “Innovations in ingeneering”, (Burgas, Bulgaria, 9-12 september 2015).
  13. M.P.Rud, Bulletin of Cherkasy State Technological University. Series: Technical Sciences, (2007), pp. 148-150. [in Ukrainian]
  14. M.Bondarenko, V.Antonyuk, Yu.Kovalenko, M.Rud, R.Haidash, Ukrainian Journal of Mechanical Engineering and Materials Science, 1 (4), pp.58-64 (2018).

Article full text

Download PDF