Features of the tribological behavior of the magnesium alloy Mg -1% ca depending on the structural state

  • 1 Ufa State Aviation Technical University, Russia
  • 2 National Taiwan University
  • 3 Ufa State Aviation Technical University, Russia; Bashkir State University


This paper presents experimental data on the tribological properties of the Mg-1%Ca magnesium alloy with different microstructures (coarse-grained microstructure in the initial state, and ultrafine-grained and nanocrystaline microstructures after severe plastic deformation via two processes – equal-channel angular pressing and high pressure torsion) in contact with an indenter made of the Fe-18W-4Cr- 0.8C steel without any coating and with applied hydroxyapatite, which is the main mineral component of bones. An indenter with hydroxyapatite on the surface was used as a bone simulator. As a result of the experiments, it was found that the shear strength of adhesive bonds and the adhesive component of the friction coefficient are structurally sensitive parameters. For all the samples in the considered contact pairs, when using a bone tissue simulator the strength of adhesive bonds was lower than that when using a steel indenter. It is noted that ultrafine-grained and nanocrystalline structures produced as a result of severe plastic deformation via two processes, equal-channel angular pressing and high pressure torsion, contribute to a decrease in the shear strength of adhesive bonds and the adhesive component of the friction coefficient due to strengthening resulting from grain size reduction from originally 100 μm to 1.4–4 μm on average in the investigated Mg-Ca magnesium alloy.



  1. I.A. Khlusov, D.V. Mitrichenko, A.B. Prosolov, O.O. Niko-laeva, G.B. Slepchenko, Yu.P. Sharkeev, Short review of the bio-medical properties and application of magnesium alloys for bone tissue bioengineering, Bulletin of Siberian Medicine. 2019; 18 (2): 274–286. DOI:10.20538/1682-0363-2019-2-274-286
  2. F. Witte, The history of biodegradable magnesium implants: A review, Acta Biomater. 2010; 6 (5): 1680–1692. doi:10.1016/j.actbio.2010.02.028
  3. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehet-bauer, Y.T. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation, JOM: the journal of the Minerals, Met-als & Materials Society 58(4): pp 33-39//2006. DOI:10.1007/s11837-006-0213-7
  4. T.C. Lowe and R.Z. Valiev, The use of severe plastic defor-mation techniques in grain refinement, JOM: 56(10): pp. 64- 68//2004. 10.1007/s11837-004-0295-z
  5. B. Stalin, V. S. Vidhya, M. Ravichandran, A. Naresh Kumar, G.T. Sudha, Characterization and Properties of Mg–TiO2 Compo-sites Produced via Ball Milling and Powder Metallurgy, Metallo-fiz. Noveishie Tekhnol., 42, No. 4: 497–509 (2020), DOI:10.15407/mfint.42.04.0497.
  6. S. Manivannan, J. Vairamuthu, Samuel Tilahun, M. D. Vi-jayakumar, C. Ramesh Kannan and B. Stalin, The influence of rare earth cerium addition on mechanical and corrosion properties cast Mg-6Al-1Zn magnesium alloy//2020 IOP Conf. Ser.: Mater. Sci. Eng. 988 012111. 10.1088/1757- 899X/988/1/012111
  7. B. Stalin, M. Ravichandran, V. Mohanavel, L.P. Raj, Investi-gations on microstructure and mechanical properties of Mg-5wt.% Cu-TiB2 composites produced via powder metallurgy route, Journal of Mining and Metallurgy, Section B: Metallurgy 2020 Vol. 56, Issue 1, pp. 99-108.
  8. J Vairamuthu, S. Tilahun, M.D. Vijayakumar, C. R. Kannan, S. Manivannan and B. Stalin, The squeeze casting parametric effect on magnesium metal matrix composite, 2020 IOP Conf. Ser.: Mater. Sci. Eng. 988 012112 899X/988/1/012112
  9. V.M. Chornyi, The prospects of using biodegradable magne-sium-based alloys in osteosynthesis, Zaporozhskii Meditsinskii Zhurnal. 2013; 6 (81): 76–79 (in Russian).
  10. A.Yu. Vinogradov, E.V. Vasiliev, M.L. Linderov, D.L. Mer-son, E.O. Rzhevskaya, The effect of equal-channel angular press-ing on the structure and mechanical properties of Mg-Zn-Ca mag-nesium alloy, Science Vector of Togliatti State University. 2015. № 4 (34), p. 18-24 (in Russian).
  11. R.Z. Valiev, Design of nanostructured metals and alloys with unique properties using severe plastic deformation, Rossiiskie Nanotekhnologii. – 2006, V.1, №1-2, p. 208-216 (in Russian).
  12. R.Z. Valiev, A.P. Zhilyaev, T.G. Langdon, Bulk Nanostruc-tured Materials: Fundamentals and Applications, 2014 by John Wiley & Sons, Inc., 456 pages. DOI:10.1002/9781118742679
  13. O. Kulyasova, R. Islamgaliev, H.-C. Lin, H. Yılmazer, Micro-structure and Mechanical Properties of the UFG Magnesium Alloy Mg-1%Ca, Materials Science Forum. 2020. V. 1016, pp 768-773. DOI: 10.4028/www.scientific. net/MSF.1016.768
  14. F. Živić, N. Grujović, G. Manivasagam, C. Richard, J. Lan-doulsi, V. Petrović, The Potential of Magnesium Alloys as Bioab-sorbable /Biodegradable Implants for Biomedical Applica-tions//Tribology in Industry, Vol. 36, No. 1 (2014) 67-73.
  15. S.-J. Huang, Y.-R. Jeng, V. I. Semenov and Y.-Z. Dai, Par-ticle Size Effects of Silicon Carbide on Wear Behavior of SiCp- Reinforced Magnesium Matrix Composites, Tribology Letters (2011), V. 42, No. 1, p. 79-87. s11249- 011-9751-4
  16. V.I. Semenov, L.Sh. Shuster, C.V. Chertovskikh, Y.-R. Jeng, S.-J. Huang, Y.-Zh. Dao, S.-J. Hwang Tribology of Composite Materials on the Basis of Magnesium Alloy with Powder Filler of SiC, Tribology in Industry, Volume 29, No. 1&2, 2007, p. 37-40.
  17. V.I. Semenov, Y.-R. Jeng, S.-J. Huang, Y.-Zh. Dao, S.-J. Hwang, L.Sh. Shuster, S.V. Chertovskikh and P.-Ch. Lin, Tribo-logical properties of the AZ91D magnesium alloy hardened with silicon carbide and by severe plastic deformation, Journal of Fric-tion and Wear. Vol. 30, (2009), pp. 194–198
  18. Y.D Liao, Z.Y Li, G.Q Tang. Evaluation for adhesion strength of coating and substrate by burying beforehand specimen, Journal of Wuhan University of Technology-Mater Sci Ed Vol. 18, (2003), pp. 31-35.
  19. S.A. Lurie, P.A. Belov, D.B. Volkov-Bogorodsky, Multiscale modeling in the mechanics of materials: cohesion, interfacial inte-ractions, inclusions and defects, in book: Lecture Notes in Applied and Computational Mechanics–Analysis and Simulation of Mul-tield Problems, vol. 12, Springer, 2003 DOI:10.1007/978-3-540- 36527-3_9
  20. Y. Ichikawa, S. Barradas, F. Borit, V. Guipont, M. Jeandin, M. Nivard, L. Berthe, K. Ogawa, T. Shoji, Evaluation of Adhesive Strength of Thermal-Sprayed Hydroxyapatite Coatings Using the LAser Shock Adhesion Test (LASAT), Materials Transactions, Vol. 48, No. 4 (2007) pp. 793-798.
  21. Y. Zheng, Magnesium Alloys as Degradable Biomaterials, CRC Press, 2015, 578 р. DOI:10.1201/b18932
  22. L.Sh. Shuster Adhesive Interaction Between Solid Metallic Bodies, Ufa: Gilem, ISBN 5-7501-0147-9, 1999, 198 p. (in Rus-sian).
  23. J.F. Nie, Precipitation and Hardening in Magnesium Alloys, Metall Mater Trans A 43, 3891–3939 (2012). DOI:10.1007/s11661-012-1217-2.
  24. K. Oh-ishi, R. Watanabe, C.L. Mendis, K. Hono, Age-hardening response of Mg–0.3 at.%Ca alloys with different Zn contents, Materials Science and Engineering (2009) A 526(1) p.177-184 DOI:10.1016/j.msea.2009.07.027
  25. E.V. Vasilev, V.I. Kopylov, M.L. Linderov, A.I. Brilevsky, D.L. Merson, A.Yu. Vinogradov, High strength and fatigue prop-erties of Mg-Zn-Ca alloys after severe plastic deformation, Letters on Materials. 9(2) (2019), pp 157-161.
  26. S.V. Dobatkin, E.A. Lukyanova, N.S. Martynenko, N.Yu. Anisimova, M.V. Kiselevskiy, M.V Gorshenkov, N.Yu. Yurchen-ko, G.I. Raab, V.S. Yusupov, N. Birbilis, G.A. Salishchev and Y.Z. Estrin, Strength, corrosion resistance, and biocompatibility of ul-trafine-grained Mg alloys after different modes of severe plastic deformation, IOP Conf. Ser.: Mat. Sci. Eng. 194 (2017) 012004. DOI:10.1088/1757-899X/194/1/012004
  27. W. Li, X. Liu, Y. Zheng, W. Wang, W. Qiao, K.W.K. Yeung, K.M.C. Cheung, S. Guan, O.B. Kulyasova, R.Z. Valiev, In vitro and in vivo studies on ultrafine-grained biodegradable pure Mg, Mg-Ca alloy and Mg-Sr alloy processed by high-pressure torsion, Biomaterials Science. V.8, I.18, p. 5071-5087. DOI:10.1039/d0bm00805b
  28. F.S. Novik, Ya.B. Arsov, Optimization of Metal Technology Processes by Experiment Design, Мoscow: Mashinostroenie, 1980. 304 p. (in Russian).
  29. I.V. Kragelskiy, Friction and Wear, Мoscow: Mashinostroe-nie, 1968. 480 p. (in Russian).

Article full text

Download PDF