Application of characterisation methods in the development of biomedical titanium alloys

  • 1 University of Zagreb, Faculty of Metallurgy, Croatia
  • 2 Catholic University School of Medicine, Croatia


Biomaterials are becoming an increasingly important research topic over time as they are used to replace parts and functions of the human body, helping to improve the quality of human life. Titanium alloys are particularly important for the development of new biomaterials. Commercial pure titanium and its alloys are used as essential structural biomaterials in the manufacture of implants due to their excellent biocompatibility, good corrosion resistance and mechanical strength. However, studies have shown that aluminum and vanadium ions are released in alloys such as Ti-6Al-4V, which can cause health problems over time. Because of the problems that occur, researchers are working to improve the properties of titanium alloys by adding new elements. In most cases, different metals are added to titanium and it is known that with the presence of different metals, the properties of titanium also change. All biomedical titanium alloys must undergo various testing procedures before they can be used. The article describes the characterisation methods used in the development of titanium alloys, such as: light and scanning electron microscopy, energy-dispersive spectrometry, X-ray diffraction analysis, differential scanning calorimetry, differential thermal analysis. The reliability of the results depends on the methods used and the avoidance of errors in the characterisation of biomedical alloys in order to reach better conclusions and produce alloys of the highest quality desirable for use in the human body.



  1. M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Materials Science, 54, 97-425 (2009).
  2. A.J. Festas, A. Ramos, J.P. Davim, Proceedings of the Institution of Mechanical Engineers, Part L, 234, 1-11 (2019).
  3. M. Kaur, K. Singh, Materials Science and Engineering: C,102, 844-862 (2019).
  4. L.-C. Zhang, L.-Y. Chen, Adv. Eng. Mater., 21, 1-29, 2019.
  5. C. S. Pitchi, A. Priyadarshini, G. Sana, S.K. R. Narala, Materials Today: Proceedings, 26, 3297-3304 (2022).
  6. FA Anene, CN A. Jaafar, I Zainol, MA Azmah Hanim, MT Suraya, Proc IMechE Part C: J Mechanical Engineering Science 235, 1-14 (2020).
  7. W. Xu, Z. Liu, X. Lu, J. Tian, G. Chen, B. Liu, Z. Li, X. Qu, C. Wen, Science China Materials, 62, 1-12 (2019).
  8. K. Pałka, R. Pokrowiecki, Adv. Eng. Mater., 20, 1-18 (2018).
  9. M. A. Hussein, A. S. Mohammed, N. Al-Aqeeli, Materials, 8, 2749-2768 (2015).
  10. V. Viteri, E. Fuentes, TribologyFundamentals and Advancements, 5, 1-28 (2013).
  11. S. Lascano, C. Arévalo, I. Montealegre-Melendez, S. Muñoz, J. A. Rodriguez-Ortiz, P. Trueba, Y. Torres, Appl. Sci, 9, 982 (2019).
  12. F. Mahyudin, H. Hermawan, Biomaterials and Medical Devices. Vol. 58, Springer International Publishing, 58, 1-249 (2016).
  13. S. Agarwal, J. Curtin, B. Duffy, S. Jaiswal, Mater. Sci. Eng. C, 68, 948-963 (2016).
  14. D. Annur, I. Kartika, S. Supriadi, B. Suharno, Mater. Res. Express, 8 ,1-24 (2021).
  15. A. Mohammed, A. Abdullah, Proceedings of 2018 International Conference on Hydraulics and Pneumatics- HERVEX, 1-9 (2018).
  16. A. L. Ryland, Journal of Chemical Education, 35, 1-4 (1958).
  17. A. A. Bunaciu, E. G. Udriştioiu, H. Y. Aboul-Enein, Critical Reviews in Analytical Chemistry, 45, 289-299 (2015).
  18. G.V. Fetisov, Physics-Uspekhi, 63, 2-32 (2020).
  19. K. Hildal, Handbook of Thermal Analysis and Calorimetry, 6, 781-828 (2018).
  20. C. Schick, D. Lexa, L. Leibowitz, Characterization of Materials, 1-13 (2013).
  21. R. A. Meyers A. Riga, R. Collins, Encyclopedia of Analytical Chemistry, 1-33 (2020).
  22. A. Mohammed, A. Abdullah, J. Mech. Behav. Biomed. Mater., (2019).
  23. P. Pripanapong, T. Luangvaranunt, Advanced Materials Research, 93, 99-104 (2010).
  24. M. Alqattan, L. Peters, Y. Alshammari, F. Yang, L. Bolzoni, Regenerative Biomaterials, 1-8 (2020).
  25. W. Xu, M. Li 1, C. Wen, S. Lv, C. Liu, X. Lu, X. Qu, Materials, 11, 1-12 (2018).
  26. M.A. Haq, S.F. Abbas, N.S.A. EOM, T.S. Kim, B.Lee, K.-T. Park, B.S.Kim, Arch. Metall. Mater., 63, 1429-1432 (2018).
  27. D. Kalita, Ł. Rogal, T. Czeppe, A. Wojcik, A. Kolano-Burian, P. Zackiewicz, B. Kania, J. Dutkiewicz, Journal of Materials Engineering and Performance, 29, 1445-1452 (2022).
  28. Y. L. Zhoua, M. Niinomi, T. Akahori, H. Fukui, H. Toda, Materials Science and Engineering A, 398, 28-36 (2005).
  29. A. B. Elshalakany, S. Ali, A. A. Mata, A. K. Eessaa, P. Mohan, T.A. Osman, V. A. Borras, Journal of Materials Engineering and Performance, 26, 1262-1271 (2017).
  30. W.F. Ho, C.P. Ju, J.H. Lin, Biomaterials, 20, 2115-2122 (1999).
  31. T. dos Rei Luz, V. A. Rodrigues Henriques, J. L. de Oliveira, E. F. Diniz, SAE Technical Paper Series [SAE International 22nd SAE Brasil International Congress and Display - (OCT. 07, 2013)] SAE Technical Paper Series, 1, 1-6 (2013).
  32. Lj. Slokar, A. Ńtrkalj, Z. Glavań, Engineering Review, 39, 115- 123 (2019).
  33. J. Liu, L. Chang, H. Liub, Y. Li, H. Yanga, J. Ruan, Mater. Sci. Eng. C, 71, 512–519 (2017).
  34. G. Popescu, B. Ghiban, C. A. Popescu, L. Rosu, R. Truscă, I. Carcea, V. Soare, D. Dumitrescu, I. Constantin, M. T. Olaru, B. A. Carlan, Mater. Sci. Eng., 400, 1-9 (2018).

Article full text

Download PDF