TECHNOLOGIES
3D Design and Prototyping of a Microfluidic Device for Blood Cells’ Investigations
- 1 Institute of Mechanics, Bulgarian Academy of Sciences, Bulgaria
- 2 Center of Competence at Mechatronics and Clean Technologies – MIRACle, Sofia, Bulgaria
Abstract
The present study offers an important technological approach for the development of a disposable microfluidic channel using 3D nanoprinter – Photonic Professional GT2 (Nanoscribe, Germany). This publication aims to present 3D modelling, simulation, and prototype of a 3D nanoprinted microfluidic device for the investigation of blood cells. The design of 3D model of a microchannel is realized by the 3D CAD analysis software – SOLIDWORKS. A suitable laminar flow is generated by using computational fluid dynamics (CFD) software. As a result, the critical points of the pressure, velocity and wall shear stress into the microfluidic channel are obtained. An actual physical prototype of the proposed microfluidic device is developed, using a highly innovative technology of 3D nanoprinting by two-photon polymerization. Experimental studies with dilute erythrocyte suspensions are conducted to test the functionality of the developed real-world prototype of nano 3D printed microchannel.
Keywords
References
- Whitesides GM. Nature. 2006 Jul 27;442(7101):368-73. doi: 10.1038/nature05058R.
- Rodrigues, D. Pinho, V. Faustino, R. Lima, Biomed Microdevices, 2015 Dec, 17 (6), pp 108: 1 – 9.
- Vladisavljević GT, Khalid N, Neves MA, Kuroiwa T, Nakajima M, Uemura K, Ichikawa S, Kobayashi I. Adv Drug Deliv Rev. 2013 Nov;65(11-12):1626-63. doi: 10.1016/j.addr.2013.07.017.
- Velve-Casquillas G, Le Berre M, Piel M, Tran PT. Nano Today. 2010 Feb;5(1):28-47. doi: 10.1016/j.nantod.2009.12.001.
- Chen, L.; Guo, X.; Sun, X.; Zhang, S.; Wu, J.; Yu, H.; Zhang, T.; Cheng, W.; Shi, Y.; Pan, L. 2023, 14, 547. https://doi.org/10.3390/mi14030547.
- Wu J, Fang H, Zhang J, Yan S. J Nanobiotechnology. 2023 Mar 11;21(1):85. doi: 10.1186/s12951-023-01846-x.
- Oh KW. Microfluidic 2019. Micromachines (Basel). 2020 Apr 1;11(4):370. doi: 10.3390/mi11040370
- Pinho D, Carvalho V, Gonçalves IM, Teixeira S, Lima R. J Pers Med. 2020 Nov 26;10(4):249. doi: 10.3390/jpm10040249.
- Tomaiuolo, G. Biomicrofluidics 2014, 8, 051501.
- Fujiwara, H.; Ishikawa, T.; Lima, R.; Matsuki, N.; Imai, Y.; Kaji, H.; Nishizawa, M.; Yamaguchi, T. J. Biomech. 2009, 42, 838–843.
- Niculescu, A.-G.; Chircov, C.; Bîrc˘a, A.C. Grumezescu, A.M. A Review. Int. J. Mol. Sci. 2021, 22, 2011. https://doi.org/10.3390/ijms22042011.
- Scott, S. M., and Ali, Z. (2021). An overview. Micromachines 12 (3), 319. doi:10.3390/MI12030319.
- Ching, T., Nie, X., Chang, S.-Y., Toh, Y.-C., and Hashimoto, M. (2023). Princ. Hum. Organs-on-Chips 2023, 1–36. doi:10.1016/B978-0-12-823536-2.00014-6 Chin.
- Rodríguez CF, Andrade-Pérez V, Vargas MC, Mantilla-Orozco A, Osma JF, Reyes LH and Cruz JC (2023), Front. Bioeng. Biotechnol. 11:1176557. doi: 10.3389/fbioe.2023.1176557.
- Grebenyuk, S., Abdel Fattah, A. R., Kumar, M., Toprakhisar, B., Rustandi, G., Vananroye, A., et al. (2023). Nat. Commun. 14 (1), 193. doi:10.1038/s41467-022-35619-1.
- Chen, Y. Y., Kingston, B. R., and Chan, W. C. W. (2020). Adv. Mater. Technol. 5 (6), 2000103. doi:10.1002/admt.202000103
- Santana, H. S., Palma, M. S. A., Lopes, M. G. M., Souza, J., Lima, G. A. S., Taranto, O. P., et al. (2020). Industrial Eng. Chem. Res. 59 (9), 3794–3810. doi:10.1021/acs.iecr.9b03787.
- Bunea, A.-I.; del CastilloIniesta, N.; Droumpali, A.; Wetzel, A.E.; Engay, E.; Taboryski, R. Micro 2021, 1, 164–180. https://doi.org/10.3390/ micro1020013
- Andrew I.M. Greer, Emma Barbour, Marie F. Cutiongco, John M. Stormonth-Darling, Neil Convery, Rakan E. Alsaigh, Martin P.J. Lavery, Nikolaj Gadegaard, Applied Materials Today, Volume 21, 2020, 100782, https://doi.org/10.1016/j.apmt.2020.100782.
- Ho CM, Ng SH, Li KH, Yoon YJ. Lab Chip. 2015;15(18):3627- 37. doi: 10.1039/c5lc00685f.
- Yeong, W. Y., Sudarmadji, N., Yu, H. Y., Chua, C. K., Leong, K. F., Venkatraman, S. S., et al. (2010). Acta Biomater. 6 (6), 2028–2034. doi:10. 1016/j.actbio.2009.12.033.
- Wu, W., Deconinck, A., and Lewis, J. A. (2011). Adv. Mater. Weinheim. 23 (24), H178–H183. doi:10.1002/adma.201004625.
- Krejcova, L., Nejdl, L., Rodrigo, M., Rodrigo, M. A., Zurek, M., Matousek, M., et al. (2014). Biosens. Bioelectron. 54, 421– 427. doi:10.1016/j.bios.2013.10.031.
- Gowers, S. A. N., Curto, V. F., Seneci, C. A., Wang, C., Anastasova, S., Vadgama, P., et al. (2015), Anal. Chem. 87, 7763–7770. doi:10.1021/acs.analchem.5b01353.
- Kadimisetty, K., Mosa, I. M., Malla, S., Wardena, J. E. S., Kuhns, T., Faria, R. C., et al. (2016). 3D-Printed supercapacitor-powered electrochemiluminescent protein immunoarray. Biosens. Bioelectron. 15, 188–193. doi:10.1016/j.bios.2015.09.017.
- Oh, S., and Choi, S. (2018), Micromachines 9 (7), 314. doi:10.3390/mi9070314.
- Chen, J., Liu, C. Y., Wang, X., Sweet, E., Liu, N., Gong, X., et al. (2019), Biosens. Bioelectron. 2019, 111900. doi:10.1016/j.bios.2019.111900.