TECHNOLOGIES

3D Design and Prototyping of a Microfluidic Device for Blood Cells’ Investigations

  • 1 Institute of Mechanics, Bulgarian Academy of Sciences, Bulgaria
  • 2 Center of Competence at Mechatronics and Clean Technologies – MIRACle, Sofia, Bulgaria

Abstract

The present study offers an important technological approach for the development of a disposable microfluidic channel using 3D nanoprinter – Photonic Professional GT2 (Nanoscribe, Germany). This publication aims to present 3D modelling, simulation, and prototype of a 3D nanoprinted microfluidic device for the investigation of blood cells. The design of 3D model of a microchannel is realized by the 3D CAD analysis software – SOLIDWORKS. A suitable laminar flow is generated by using computational fluid dynamics (CFD) software. As a result, the critical points of the pressure, velocity and wall shear stress into the microfluidic channel are obtained. An actual physical prototype of the proposed microfluidic device is developed, using a highly innovative technology of 3D nanoprinting by two-photon polymerization. Experimental studies with dilute erythrocyte suspensions are conducted to test the functionality of the developed real-world prototype of nano 3D printed microchannel.

Keywords

References

  1. Whitesides GM. Nature. 2006 Jul 27;442(7101):368-73. doi: 10.1038/nature05058R.
  2. Rodrigues, D. Pinho, V. Faustino, R. Lima, Biomed Microdevices, 2015 Dec, 17 (6), pp 108: 1 – 9.
  3. Vladisavljević GT, Khalid N, Neves MA, Kuroiwa T, Nakajima M, Uemura K, Ichikawa S, Kobayashi I. Adv Drug Deliv Rev. 2013 Nov;65(11-12):1626-63. doi: 10.1016/j.addr.2013.07.017.
  4. Velve-Casquillas G, Le Berre M, Piel M, Tran PT. Nano Today. 2010 Feb;5(1):28-47. doi: 10.1016/j.nantod.2009.12.001.
  5. Chen, L.; Guo, X.; Sun, X.; Zhang, S.; Wu, J.; Yu, H.; Zhang, T.; Cheng, W.; Shi, Y.; Pan, L. 2023, 14, 547. https://doi.org/10.3390/mi14030547.
  6. Wu J, Fang H, Zhang J, Yan S. J Nanobiotechnology. 2023 Mar 11;21(1):85. doi: 10.1186/s12951-023-01846-x.
  7. Oh KW. Microfluidic 2019. Micromachines (Basel). 2020 Apr 1;11(4):370. doi: 10.3390/mi11040370
  8. Pinho D, Carvalho V, Gonçalves IM, Teixeira S, Lima R. J Pers Med. 2020 Nov 26;10(4):249. doi: 10.3390/jpm10040249.
  9. Tomaiuolo, G. Biomicrofluidics 2014, 8, 051501.
  10. Fujiwara, H.; Ishikawa, T.; Lima, R.; Matsuki, N.; Imai, Y.; Kaji, H.; Nishizawa, M.; Yamaguchi, T. J. Biomech. 2009, 42, 838–843.
  11. Niculescu, A.-G.; Chircov, C.; Bîrc˘a, A.C. Grumezescu, A.M. A Review. Int. J. Mol. Sci. 2021, 22, 2011. https://doi.org/10.3390/ijms22042011.
  12. Scott, S. M., and Ali, Z. (2021). An overview. Micromachines 12 (3), 319. doi:10.3390/MI12030319.
  13. Ching, T., Nie, X., Chang, S.-Y., Toh, Y.-C., and Hashimoto, M. (2023). Princ. Hum. Organs-on-Chips 2023, 1–36. doi:10.1016/B978-0-12-823536-2.00014-6 Chin.
  14. Rodríguez CF, Andrade-Pérez V, Vargas MC, Mantilla-Orozco A, Osma JF, Reyes LH and Cruz JC (2023), Front. Bioeng. Biotechnol. 11:1176557. doi: 10.3389/fbioe.2023.1176557.
  15. Grebenyuk, S., Abdel Fattah, A. R., Kumar, M., Toprakhisar, B., Rustandi, G., Vananroye, A., et al. (2023). Nat. Commun. 14 (1), 193. doi:10.1038/s41467-022-35619-1.
  16. Chen, Y. Y., Kingston, B. R., and Chan, W. C. W. (2020). Adv. Mater. Technol. 5 (6), 2000103. doi:10.1002/admt.202000103
  17. Santana, H. S., Palma, M. S. A., Lopes, M. G. M., Souza, J., Lima, G. A. S., Taranto, O. P., et al. (2020). Industrial Eng. Chem. Res. 59 (9), 3794–3810. doi:10.1021/acs.iecr.9b03787.
  18. Bunea, A.-I.; del CastilloIniesta, N.; Droumpali, A.; Wetzel, A.E.; Engay, E.; Taboryski, R. Micro 2021, 1, 164–180. https://doi.org/10.3390/ micro1020013
  19. Andrew I.M. Greer, Emma Barbour, Marie F. Cutiongco, John M. Stormonth-Darling, Neil Convery, Rakan E. Alsaigh, Martin P.J. Lavery, Nikolaj Gadegaard, Applied Materials Today, Volume 21, 2020, 100782, https://doi.org/10.1016/j.apmt.2020.100782.
  20. Ho CM, Ng SH, Li KH, Yoon YJ. Lab Chip. 2015;15(18):3627- 37. doi: 10.1039/c5lc00685f.
  21. Yeong, W. Y., Sudarmadji, N., Yu, H. Y., Chua, C. K., Leong, K. F., Venkatraman, S. S., et al. (2010). Acta Biomater. 6 (6), 2028–2034. doi:10. 1016/j.actbio.2009.12.033.
  22. Wu, W., Deconinck, A., and Lewis, J. A. (2011). Adv. Mater. Weinheim. 23 (24), H178–H183. doi:10.1002/adma.201004625.
  23. Krejcova, L., Nejdl, L., Rodrigo, M., Rodrigo, M. A., Zurek, M., Matousek, M., et al. (2014). Biosens. Bioelectron. 54, 421– 427. doi:10.1016/j.bios.2013.10.031.
  24. Gowers, S. A. N., Curto, V. F., Seneci, C. A., Wang, C., Anastasova, S., Vadgama, P., et al. (2015), Anal. Chem. 87, 7763–7770. doi:10.1021/acs.analchem.5b01353.
  25. Kadimisetty, K., Mosa, I. M., Malla, S., Wardena, J. E. S., Kuhns, T., Faria, R. C., et al. (2016). 3D-Printed supercapacitor-powered electrochemiluminescent protein immunoarray. Biosens. Bioelectron. 15, 188–193. doi:10.1016/j.bios.2015.09.017.
  26. Oh, S., and Choi, S. (2018), Micromachines 9 (7), 314. doi:10.3390/mi9070314.
  27. Chen, J., Liu, C. Y., Wang, X., Sweet, E., Liu, N., Gong, X., et al. (2019), Biosens. Bioelectron. 2019, 111900. doi:10.1016/j.bios.2019.111900.

Article full text

Download PDF