MACHINES

Energy evaluation of a three-cylinder steam turbine which operates in combined cycle power plant

  • 1 Faculty of Engineering, University of Rijeka, Croatia

Abstract

This paper presents an energy analysis of a three-cylinder steam turbine from a combined cycle power plant. Observing all the cylinders from the analyzed turbine, it is found that the dominant mechanical power producer is Low Pressure Cylinder (LPC), followed by the Intermediate Pressure Cylinder (IPC), while High Pressure Cylinder (HPC) is the cylinder which produces the lowest mechanical power. Whole observed steam turbine develop 119.41 MW of useful mechanical power. Energy loss and energy efficiency of all cylinders are reverse proportional – higher energy efficiency will result with lower energy loss and vice versa. IPC is the cylinder which has the lowest energy loss (equal to 2.59 MW) and the highest energy efficiency of 93.32%. Whole observed steam turbine has energy loss equal to 23.43 MW, while its energy efficiency is equal to 83.60%, what falls in the expected range of such low power steam turbines. Steam mass flow rate through each cylinder is the main element which defines produced mechanical power and energy flows.

Keywords

References

  1. Sutton, I. (2017). Plant design and operations. Gulf Professional Publishing
  2. Tanuma, T. (Ed.). (2017). Advances in steam turbines for modern power plants. Woodhead Publishing.
  3. Ahmadi, G. R., & Toghraie, D. (2016). Energy and exergy analysis of Montazeri steam power plant in Iran. Renewable and Sustainable Energy Reviews, 56, 454-463. (doi:10.1016/j.rser.2015.11.074)
  4. Ebrahimgol, H., Aghaie, M., Zolfaghari, A., & Naserbegi, A. (2020). A novel approach in exergy optimization of a WWER1000 nuclear power plant using whale optimization algorithm. Annals of Nuclear Energy, 145, 107540. (doi:10.1016/j.anucene.2020.107540)
  5. Khanmohammadi, S., Azimian, A. R., & Khanmohammadi, S. (2013). Exergy and exergo–economic evaluation of Isfahan steam power plant. International Journal of Exergy, 12(2), 249-272. (doi:10.1504/IJEX.2013.053386)
  6. Burin, E. K., Vogel, T., Multhaupt, S., Thelen, A., Oeljeklaus, G., Görner, K., & Bazzo, E. (2016). Thermodynamic and economic evaluation of a solar aided sugarcane bagasse cogeneration power plant. Energy, 117, 416-428. (doi:10.1016/j.energy.2016.06.071)
  7. Abbaspour, H., Ehyaei, M. A., Ahmadi, A., Panahi, M., Abdalisousan, A., & Mirzohosseini, A. (2021). Energy, exergy, economic, exergoenvironmental and environmental (5E) analyses of the cogeneration plant to produce electrical power and urea. Energy Conversion and Management, 235, 113951. (doi:10.1016/j.enconman.2021.113951)
  8. Kostyuk, A., & Frolov, V. (1988). Steam and gas turbines. Mir Publishers.
  9. Lorencin, I., Anđelić, N., Mrzljak, V., & Car, Z. (2019). Genetic algorithm approach to design of multi-layer perceptron for combined cycle power plant electrical power output estimation. Energies, 12(22), 4352. (doi:10.3390/en12224352)
  10. Jiang, L., Gonzalez-Diaz, A., Ling-Chin, J., Roskilly, A. P., & Smallbone, A. J. (2019). Post-combustion CO2 capture from a natural gas combined cycle power plant using activated carbon adsorption. Applied Energy, 245, 1-15. (doi:10.1016/j.apenergy.2019.04.006)
  11. Carapellucci, R., & Giordano, L. (2021). Regenerative gas turbines and steam injection for repowering combined cycle power plants: Design and part-load performance. Energy Conversion and Management, 227, 113519. (doi:10.1016/j.enconman.2020.113519)
  12. Sabia, G., Heinze, C., Alobaid, F., Martelli, E., & Epple, B. (2019). ASPEN dynamics simulation for combined cycle power plant–Validation with hot start-up measurement. Energy, 187, 115897. (doi:10.1016/j.energy.2019.115897)
  13. Glazar, V., Mrzljak, V., & Gubic, T. (2019). Thermodynamic Analysis of Combined Cycle Power Plant. In 14th International Conference Heat Transfer, Fluid Mechanics and Thermodynamics (pp. 355-341).
  14. Najjar, Y. S., & Manaserh, Y. M. A. (2019). Aligning combined cycle power plant performance with field measurements. Arabian Journal for Science and Engineering, 44, 1657-1669. (doi:10.1007/s13369-018-3615-2)
  15. Lorencin, I., Car, Z., Kudláček, J., Mrzljak, V., Anđelić, N., & Blaţević, S. (2019). Estimation of combined cycle power plant power output using multilayer perceptron variations. In 10th International Technical Conference-Technological Forum (pp. 94- 98).
  16. Petrakopoulou, F., Tsatsaronis, G., Morosuk, T., & Carassai, A. (2012). Conventional and advanced exergetic analyses applied to a combined cycle power plant. Energy, 41(1), 146-152. (doi:10.1016/j.energy.2011.05.028)
  17. Mohammed, M. K., Awad, O. I., Rahman, M. M., Najafi, G., Basrawi, F., Abd Alla, A. N., & Mamat, R. (2017). The optimum performance of the combined cycle power plant: A comprehensive review. Renewable and Sustainable Energy Reviews, 79, 459-474. (doi:10.1016/j.rser.2017.05.060)
  18. Ersayin, E., & Ozgener, L. (2015). Performance analysis of combined cycle power plants: A case study. Renewable and Sustainable Energy Reviews, 43, 832-842. (doi:10.1016/j.rser.2014.11.082)
  19. Mrzljak, V., Prpić-Oršić, J., Poljak, I., & Šegota, S. B. (2020). Exergy analysis of steam condenser at various loads during the ambient temperature change. Machines. Technologies. Materials., 14(1), 12-15.
  20. Kanoğlu, M., Çengel, Y. A., & Dinçer, İ. (2012). Efficiency evaluation of energy systems. Springer Science & Business Media.
  21. Mrzljak, V., Poljak, I., & Mrakovčić, T. (2017). Energy and exergy analysis of the turbo-generators and steam turbine for the main feed water pump drive on LNG carrier. Energy conversion and management, 140, 307-323. (doi:10.1016/j.enconman.2017.03.007)
  22. Mrzljak, V., Lorencin, I., Anđelić, N., & Car, Z. (2021). Thermodynamic Analysis of a Condensate Heating System from a Marine Steam Propulsion Plant with Steam Reheating. Journal of Marine Science and Application, 20(1), 117-127. (doi:10.1007/s11804-021-00191-5)
  23. Mrzljak, V., Ţarković, B., & Poljak, I. (2017). Energy and exergy analysis of sea water pump for the main condenser cooling in the LNG carrier steam propulsion system. Mathematical Modeling, 1(3), 144-147.
  24. Mrzljak, V., Poljak, I., & Medica-Viola, V. (2017). Dual fuel consumption and efficiency of marine steam generators for the propulsion of LNG carrier. Applied Thermal Engineering, 119, 331- 346. (doi:10.1016/j.applthermaleng.2017.03.078)
  25. Erdem, H. H., Akkaya, A. V., Cetin, B., Dagdas, A., Sevilgen, S. H., Sahin, B., ... & Atas, S. (2009). Comparative energetic and exergetic performance analyses for coal-fired thermal power plants in Turkey. International Journal of Thermal Sciences, 48(11), 2179- 2186. (doi:10.1016/j.ijthermalsci.2009.03.007)
  26. Lemmon, E. W., Huber, M. L., & McLinden, M. O. (2010). NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties (REFPROP), version 9.0, National Institute of Standards and Technology. R1234yf. fld file dated December, 22, 2010.
  27. Mrzljak, V., Poljak, I., & Prpić-Oršić, J. (2019). Exergy analysis of the main propulsion steam turbine from marine propulsion plant. Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike, 70(1), 59-77. (doi:10.21278/brod70105)

Article full text

Download PDF