MACHINES

Innovative mill complex for processing glass waste, applicable to the production of foam glass and composite materials

  • 1 Bulgarian Academy of Sciences, Institute of Metal Science, Equipment and Technologies with Hydro and Aerodynamics Centre ―Acad. A. Balevski, Bulgaria

Abstract

An innovative mill complex has been developed for the processing of glass waste applicable to the production of granular foam glass and fire-resistant, energy-saving, acoustic and thermal insulation composite building elements. The presented design solution is in accordance with the necessary technological characteristics of the ground vitreous raw material for use in the production process. It is envisaged that the grinding will be carried out in two stages and will be combined with homogenization of the batch being prepared. The first stage is the initial grinding of the raw material in a vibrating mill with metal grinding bodies, allowing grinding for a shorter period of time to a certain size of the particles with minimal contamination. In the second stage, the final grinding (up to a technological size of the particles) and homogenization is carried out in a ball mill with non-metallic grinding bodies. The main production equipment necessary for the realization of the presented technological process was considered.

Keywords

References

  1. K.S. Liddell, M.H. Moys, The effects of mill speed and filling on the behavior of the load in a rotary grinding mill, J. S. Afr. Inst. Min. Metall., vol. 88, No. 2, 1988, pp. 49-57.
  2. B.A. Wills, T.J. Tuzun, M.A., B.K. Loveday, A.L. Hinde, Effect of pin tip velocity, ball density and ball size on grinding kinetics in a stirred ball mill, Int. J. Miner. Process., Vol. 43, 1995, pp. 179- 191.
  3. M.H. Moys, M.A. Van Nierop, I. Smit, Progress in measuring and modelling load behavior in pilot and industrial mills, Minerals Engineering, Vol. 9, No. 12, 1996, pp. 1201-1214.
  4. J. Schilz, Internal kinematics of tumbler and planetary ball mills: A mathematical model for the parameter setting, Materials Transactions, J I M, vol. 39, No 11, 1998, pp.1152-1157.
  5. D.W. Fuerstenau, J.J. Lutch, A. De, The effect of ball size on the energy efficiency of hybrid high-pressure roll mill/ball mill grinding, Powder Technology, Vol. 105, 1999, pp. 199–204.
  6. R.K. Rajamani, B.K. Mishra, R. Venugopal, A. Datta, Discrete element analysis of tumbling mills, Powder Technology, Vol. 109, 2000, pp. 105–112.
  7. P.W. Cleary, D. Hoyer, Centrifugal mill charge motion and power draw: comparison of DEM predictions with experiment, Int. J. Miner. Process., Vol. 59, 2000, pp. 131–148.
  8. N.S. Lameck, K.K. Kiangi, M.H. Moys, Effects of grinding media shapes on load behavior and mill power in a dry ball mill, Minerals Engineering, Vol. 19, 2006, pp. 1357–1361.
  9. M.D. Sinnott, P.W. Cleary, R.D. Morrison, Is media shape important for grinding performance in stirred mills, Minerals Engineering, Vol. 24, 2011, pp. 138–151.
  10. N. Stoimenov, J.Ruzic, Investigation of milling processes in high energy mill (Attritor), XXV International Scientific and Technical Conference, ADP-2016, June 23-26th 2016, Sozopol, Bulgaria. pp. 85-90.
  11. A.Montini, M.H. Moys, The measurement of rheological properties inside a grinding mill, J. S. Afr. Inst. Min. Metall., vol. 88, No. 6, 1988, pp. 199-206.
  12. E. Amasuomo, J. Baird, ―The Concept of Waste and Waste Management‖, Journal of Management and Sustainability; Vol. 6, No. 4; 2016, pp. 88-96.
  13. G. Degli Antoni, G. Vittucci Marzetti, ―Recycling and waste generation: an estimate of the source reduction effect of recycling programs‖, Ecol. Econ., 161, 2019, pp. 321–329.
  14. F. Medici, ―Recovery of Waste Materials: Technological Research and Industrial Scale-Up‖, Materials, 2022, 15, 685, pp. 1- 3.
  15. A. Trinca, V. Segneri, T. Mpouras, N. Libardi, G. Vilardi, ―Recovery of Solid Waste in Industrial and Environmental Processes‖, Energies, 2022, 15, 7418, pp. 1-5.
  16. S. P. Cui, J. G. Zhang, Y. L. Tian, S.B. Sun, ―Generation Review on the Production Line Development of Foam Glass at Home and Abroad‖, Advanced Materials Research (Vol. 915-916), 2014, pp. 524-531.
  17. G. Hongwei, ―Foam glass production technology‖, Book, ISBN- 10: 7122207455, ISBN-13: 978-7122207456, 2014.
  18. E. Saakyan, A. Arzumanyan, G. Galstyan, ―Chemical technology of cellular glass production‖, E3S Web of Conferences 97, 02012, 2019, https://doi.org/10.1051/e3sconf/20199702012
  19. L. Lakov, K. Toncheva "Device for obtaining foam glass", Patent № 66903 B1, 2019, Status - Valid, Place of application Bulgaria.
  20. L. Aditya, T. M. I. Mahlia, B. Rismanchi, H. M. Ng, M. H. Hasan, H. S. C. Metselaar, Oki Muraza, H. B. Aditiya, ―A review on insulation materials for energy conservation in buildings’, Renewable and Sustainable Energy Reviews, Vol. 73, 2017, pp. 1352-1365.
  21. L. Lakov, B. Jivov, M. Aleksandrova, Y. Ivanova, K. Toncheva, „An innovative composite material based on sintered glass foam granules‖, Journal of Chemical Technology and Metallurgy, 53, 6, 2018, pp. 1081-1086.
  22. L. Lakov, B. Jivov, Y. Ivanova, S. Yordanov, M. Marinov, S. Rafailov, ―Composite Materials Obtained from Foamed Silicate Products‖, International Journal ―NDT Days‖, Volume II, Issue 2, Year 2019, pp. 188-194.
  23. L. Lаkov, B. Jivov, Y. Ivanova, S. Yordanov, K. Toncheva, ―Alternative possibilities for application of foamed silicate materials‖, International Scientific Journal "Machines. Technologies. Materials" Issue 1/2021, pp. 25-27.
  24. K. Toncheva, B. Jivov, L. Lakov, A. Staneva, ―Technological approach for production of silicate insulating materials and panels for the decorative cladding of buildings‖, Journal of Chemical Technology and Metallurgy, 58, 4, 2023, pp. 716-724.
  25. K. Toncheva, L. Lakov, B. Jivov, Experimental Industrial Unit for Testing of Production Technology for Foam Glass Granules and Elements from Composite Material on This Basis. International Journal ―NDT Days‖, Volume IV, Issue 4, 2021, pp. 276-285.
  26. M.H. Moys, A model of mill power as affected by mill speed, load volume, and liner design, Journal of The South African Institute of Mining and Metallurgy, vol. 93, no. 6., 1993, pp. 135- 141.
  27. I. Govender, M.S. Powell, G.N. Nurick, 3D Particle tracking in a mill: a rigorous technique for verifying DEM predictions, Minerals Engineering, Vol 14, No 10, 2001, pp 1329-1340.
  28. N. Kotake, K. Suzuki, S. Asahi, Y. Kanda, Experimental study on the grinding rate constant of solid materials in a ball mill, Powder Technology, Vol. 122, 2002, pp. 101–108.
  29. F. Shi, Comparison of grinding media—Cylpebs versus balls, Minerals Engineering, Vol. 17, 2004, pp. 1259–1268.
  30. T. Partyka, D. Yan, Fine grinding in a horizontal ball mill, Minerals Engineering, Vol. 20, 2007, pp.320–326.
  31. S. I. Yordanov, A. D. Bachvarova-Nedelcheva, R. S. Iordanova, I. D. Stambolova, Sol-gel Synthesis and Properties of Sm Modified TiO2 Nanopowders, Bulgarian Chemical Communications 50, 2018, 42-48.
  32. Y. Dimitriev, A. Bachvarova-Nedelcheva, R. Iordanova, S. Yordanov, Thermal Stability and Microheterogeneous Structure of Selenite Glasses, Physics and Chemistry of Glasses: European Journal of Glass Science and Technology, Part B, 48 (3), 2007, 138-141.
  33. I. Stambolova, O. Dimitrov, S. Vassilev, S. Yordanov, V. Blaskov, N. Boshkov, M. Shipochka, ―Preparation of newly developed CeO2/ZrO2 multilayers: Effect of the treatment temperature on the structure and corrosion performance of stainless steel‖, Journal of Alloys and Compounds, 806, 2019, 1357-1367.
  34. H. Ipek, The effects of grinding media shape on breakage rate, Minerals Engineering, Vol. 19, 2006, pp. 91–93.
  35. P.W. Cleary, Axial transport in dry ball mills, Applied Mathematical Modelling Vol. 30, 2006, pp.1343–1355.
  36. N.S. Lameck, M.H. Moys, Effects of media shape on milling kinetics, Minerals Engineering, Vol. 19, 2006, pp. 1377–1379.
  37. L.M. Tavares, R.M.D. Carvalho, Modeling breakage rates of coarse particles in ball mills, Minerals Engineering, Vol. 22, 2009, pp. 650–659.
  38. V. Petkov, M. Aleksandrova, V. Petkov, D. Teodosiev, A. Bouzekova-Penkova, „Investigation of the glassy carbon coating deposited on the titanium alloys, microstructure and mechanical properties‖, Journal of Theoretical and Applied Mechanics, Vol. 52, No 4, 2022, pp. 381-392.
  39. N. Zoghipour, E. Salamci, R. Unal, R. Valov, V. Petkov, „Investigation of Wear Behaviors of Nanodiamond Particles Added Chromium Coating on Porous Powder Metallurgy Specimens―. Protection of Metals and Physical Chemistry of Surfaces, 58, 1, Pleiades Publishing, Ltd., 2022, 42-52.
  40. M. Frigione, J. L. Barroso de Aguiar, ―Innovative Materials for Construction‖, Materials 2020, 13, 5448.
  41. H. Zhong, M. Zhang, „Engineered geopolymer composites: A state-of-the-art review―, Cement and Concrete Composites 135, 2023, 104850.
  42. M. M. Albarbary, A. M. Tahwia, I. Elmasoudi, ―Integration between sustainability and value engineering in the production of eco-friendly concrete‖, Sustainability, 15 (4), 2023, Article 3565.
  43. N. Stoimenov, Advanced computing for energy efficiency of milling processes., Problems of Engineering Cybernetics and Robotics, vol. 66, 2015, pp 83-92 107.
  44. S. Chetyov, K. Dzhustrov, Ore load influence on ball mills specific electricity consumption, Journal of Mining and Geological Sciences, Volume 63, 2020, pp 138-141

Article full text

Download PDF