TECHNOLOGIES
The impact of high voltage electric discharge treatment in ethanol on the dispersity and phase composition of Cu – Al powder mixture
- 1 Institute of Pulse Processes and Technologies of the National Academy of Sciences of Ukraine – Mykolaiv, Ukraine
- 2 V.N. Bakul Institute for superhard materials of the National Academy of Sciences of Ukraine – Kyiv, Ukraine
Abstract
Studies of the impact of high voltage electric discharge (HVED) treatment on the dispersion and phase composition of 87,5 % Al + 12,5 % Cu powder system were performed. It was shown that HVED treatment in ethanol with specific treatment energy of 5 MJ/kg leads to the decrease of mean diameter of treated powder from 15 to 11 μm, and the increase of specific treatment energy to 20 MJ/kg leads to the decrease of mean diameter of treated powder from 15 to 6 μm. X-ray diffraction analysis shows that CuAl2 and Al4C3 are synthesized in all considered treatment regimes, and the quantity of these phases depend on the specific treatment energy.
The use of “three point – plane” electrode system instead of “point – plane” during HVED treatment of 87,5 % Al + 12,5 % Cu powder system in ethanol leads to the increase of quantity of synthesized Al4C3 and CuAl2 phases with the slight decrease in the dispersion efficiency.
Up to 35% of particles in powder mixture, treated by HVED in ethanol with the use of “three point – plane” electrode system, have diameter close to the diameter of the initial powder mixture.
It is shown that the preparation of powders with an initial composition of 87.5% Al + 12.5% Cu using HVED treatment in kerosene or ethanol with subsequent consolidation by SPS method allows obtaining metal-matrix composites of the Al – Cu – C system with increased indicators of hardness, electrical conductivity and wear resistance.
Keywords
References
- O. Syzonenko, A. Torpakov, Ye. Lypian, M. Prystash , Machines. Technologies. Materials. 15, № 6. 248–251 (2021).
- O. M. Syzonenko, M. S. Prystash, A. S. Torpakov, Machines. Technologies. Materials. 12, № 1. 41–44 (2018).
- O. Sizonenko, S. Prokhorenko, A. Torpakov, D. Żak, Y. Lypian, R. Wojnarowska-Nowak, J. Polit, E. M. Sheregii, AIP Adv. 8, № 8. 085317 (2018).
- O. N. Sizonenko, E. G. Grigoryev, N. S. Pristash, A. D. Zaichenko, A. S. Torpakov, Ye. V. Lypian, V. A. Tregub, A. G. Zholnin, A. V. Yudin, A. A. Kovalenko, High Temp. Mat. Proc. 36, № 9. 891–896 (2017).
- O. N. Sizonenko, N. A. Oleinik, G. A. Petasyuk, G. D. Il’nitskaya, G. A. Bazalii, V. S. Shamraeva, É. I. Taftai, A. S. Torpakov, A. D. Zaichenko, E. V. Lipyan, Powder Metall. Met. Ceram. 52, № 7–8. 365–369 (2013).
- O. M. Syzonenko, P. I. Loboda, A. D. Zaichenko, Ye. V. Solodkiy, A. S. Torpakov, M. S. Prystash, V. O. Trehub // J. Superhard Mater. 39, № 4. 243–250 (2017).
- N. I. Kuskova , O. M. Syzonenko, A. S Torpakov, High Temp. Mat. Proc. 39, № 1. 357–367 (2020).
- О.М. Syzonenko, S.V. Prokhorenko, E.V. Lypyan, A. D. Zaichenko, M.S. Prystash, A.S. Тоrpakov, M.О. Pashchyn, R. Voinarovska-Novak, E. Sherehii, Materials Science. 56, № 2. – 232–239 (2020).
- O. M. Syzonenko, P. Tashev, M. S. Prystash, A. S. Torpakov, Ye. V. Lypian, V. Dyakova, M. Kandeva, E. I. Taftai, Y. G. Kostova, Engineering Sciences. 58, № 2. 79–94 (2021).
- A. V. Ivanov, V. N. Tsurkin, Surf. Eng. Appl. Electrochem. 55, № 1. 53–64 (2019).
- S. Grazulis, D. Chateigner, R. T. Downs, A. T. Yokochi, M. Quiros, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, A. Le Bail, Journal of Applied Crystallography. 42. 726–729 (2009).
- R. Kandrotaitė Janutienė, D.Mažeika, J. Dlouhý, O. Syzonenko, A. Torpakov, E. Lipian, A. Baltušnikas. Materials. 16(17). 5894 (2023).
- Q. Kong, L. Lian, Y. Liu, J. Zhang. Materials and Manufacturing Processes. 29, no. 10. 1232-1236 (2014).