MATERIALS

Lazer ablation in liquid as innovative method for preparation of ZnO-zeolite nanocomposites

  • 1 University of Mining and Geology “St. Ivan Rilski”, Sofia, Bulgaria
  • 2 Tokai University, Hiratsuka, Kanagawa, Japan

Abstract

Laser ablation in liquid is an eco-friendly and efficient method to produce nanomaterials with interesting properties in a laboratory scale. Previously reported ZnO nanoparticles, obtained by nanosecond and millisecond pulsed laser under various laser parameters, demonstrated photocatalytic, gas-sensing, and antibacterial activity. Here we explore the possibility for laser ablation of Zn metal plate in natural zeolite suspension and isolation of a composite ZnO-Zeo. It was characterized by UV-vis, XPS and SEM methods. The characteristic UV-vis peak for ZnO nanoparticles was observed at 340 nm, which is associated with small particles size, proven by SEM images to be 30-50 nm. The spherical ZnO particles are located on the zeolite surface. It was found that the attraction forces between both phases cause a shift in Zn 2p XPS peak positions which were determined at 1022.0 eV and 1045.1 eV for 2p3/2 and 2p1/2 levels, respectively. The approach for laser ablation in suspension could open avenue for simultaneous formation and incorporation of various nanoparticles into different supports.

Keywords

References

  1. Zeng, H.B.; Du, X.W.; Singh, S.C.; Kulinich, S.A.; Yang, S.K.; He, J.P.; Cai, W.P. Nanomaterials via laser ablation/irradiation in liquid: A review. Adv. Funct. Mater. 2012, 22, 1333–1353.
  2. Niu, K.Y.; Yang, J.; Kulinich, S.A.; Sun, J.; Du, X.W. Hollow nanoparticles of metal oxides and sulfides: Fast preparation via laser ablation in liquid. Langmuir 2010, 26, 16652–16657.
  3. Niu, K.Y.; Yang, J.; Kulinich, S.A.; Sun, J.; Li, H.; Du, X.W. Morphology control of nanostructures via surface reaction of metal nanodroplets. J. Am. Chem. Soc. 2010, 132, 9814–9819.
  4. Qin, W.J.; Kulinich, S.A.; Yang, X.B.; Sun, J.; Du, X.W. Preparation of semiconductor nanospheres by laser-induced phase separation. J. Appl. Phys. 2009, 106, 114308.
  5. Zhang, J.; Chaker, M.; Ma, D. Pulsed laser ablation based synthesis of colloidal metal nanoparticles for catalytic applications, J. Colloid Interface Sci. 2017, 489,138–149.
  6. Zhang, D.; Liu, J.; Li, P.; Tian, Z.; Liang, C. Recent advances in surfactant-free, surface charged and defect-rich catalysts developed by laser ablation and processing in liquids, ChemNanoMat 2017, 3, 512–533.
  7. Xiao, J.; Liu, P.; Wang, C.X.; Yang, G.W. External field-assisted laser ablation in liquid: An efficient strategy for nanocrystal synthesis and nanostructure assembly, Prog. Mater. Sci. 2017, 87, 140-220.
  8. Mukhopadhyaya, S.; Pratim Das, P.; Maity, S.; Ghosh, P.; Devi, P.S. Solution grown ZnO rods: Synthesis,characterization and defect mediated photocatalytic activity. Appl. Catal. B 2015, 165, 128–138.
  9. Hasnidawani, J.N.; Azlina, H.N.; Norita, H.; Bonnia, N.N.; Ratim, S.; Ali, E.S. Synthesis of ZnO Nanostructures Using Sol-Gel Method, Procedia Chem. 2016, 19, 211-216.
  10. Han, X.G.; He, H.Z.; Kuang, Q.; Zhou, X.; Zhang, X.H.; Xu, T.; Xie, Z.X.; Zheng, L.S. Controlling morphologies and tuning the related properties of nano/microstructured ZnO crystallites. J. Phys. Chem. C 2009,113, 584–589.
  11. Honda, M.; Goto, T.; Owashi, T.; Rozhin, A.G.; Yamaguchi, S.; Ito, T.; Kulinich, S.A. ZnO nanorods prepared via ablation of Zn with millisecond laser in liquid media. Phys. Chem. Chem. Phys. 2016, 18, 23628–23637.
  12. Ishikawa, Y.; Shimizu, Y.; Sasaki, T.; Koshizaki, N. Preparation of zinc oxide nanorods using pulsed laser ablation in water media at high temperature. J. Colloid Interface Sci. 2006, 300, 612–615.
  13. Kulinich, S.A.; Kondo, T.; Shimizu, Y.; Ito, T. Pressure effect on ZnO nanoparticles prepared via laser ablation in water. J. Appl. Phys. 2013, 113, 033509.
  14. Kondo, T.; Sato, Y.; Kinoshita, M.; Shankar, P.; Mintcheva, N.; Honda, M.; Iwamori, S.; Kulinich, S.A. Room temperature ethanol sensor based on ZnO prepared via laser ablation in water. Jpn. J. Appl. Phys. 2017, 56, 080304.
  15. Dorranian, D.; Solati, E.; Dejam, L. Photoluminescence of ZnO nanoparticles generated by laser ablation in deionized water. Appl. Phys. A 2012, 109, 307–314.
  16. Kim, K.K.; Kim, D.; Kim, S.K.; Park, S.M.; Song, J.K. Formation of ZnO nanoparticles by laser ablation in neat water, Chem. Phys. Lett. 2011, 511(1-3), 116-120.
  17. Abbas, K.N.; Bidin, N. Morphological driven photocatalytic activity of ZnO nanostructures. Appl. Surf. Sci.2017, 394, 498–508.
  18. Chelnokov, E.; Rivoal, M.; Colignon, Y.; Gachet, D.; Bekere, L.; Thibaudau, F. Band gap tuning of ZnO nanoparticles via Mg doping by femtosecond laser ablation in liquid environment. Appl. Surf. Sci. 2012, 258, 9408–9411.
  19. Tarasenka, N.; Butsen, A.; Pankov, V.; Velusamy, T.; Mariotti, D.; Tarasenko, N. Laser assisted preparation of doped ZnO nanocrystals. Nano-Struct. Nano-Objects 2017, 12, 210–219.
  20. Goto, T.; Honda, M.; Kulinich, S.A.; Shimizu, Y.; Ito, T. Defects in ZnO nanoparticles laser-ablated in water-ethanol mixture at different pressures. Jpn. J. Appl. Phys. 2015, 54, 070305.
  21. Sett, D.; Basak, D. Tuning the luminescence and UV photosensing properties of ZnO nanorods by strategic aqueous chemical growth. Mater. Res. Express 2015, 2, 105008.
  22. Gavrilenko, E.A.; Goncharova, D.A.; Lapin, I.N.; Nemoykina, A.L.; Svetlichnyi, V.A.; Aljulaih, A.A.; Mintcheva, N.; Kulinich, S.A. Comparative study of physicochemical and antibacterial properties of ZnO nanoparticles prepared by laser ablation of Zn target in water and air, Materials 2019, 12, 186.
  23. Mintcheva, N.; Aljulaih, A.A.; Wunderlich, W.; Kulinich, S.A.; Iwamori, S. Laser-ablated ZnO nanoparticles and their photocatalytic activity towards organic pollutants, Materials 2018, 11, 1127.
  24. Rodríguez-Iznaga, I.; Shelyapina, M.G.; Petranovskii, V. Ion Exchange in Natural Clinoptilolite: Aspects Related to Its Structure and Applications. Minerals 2022, 12, 1628.
  25. Shaw, R.; Mittal, T.; Tiwari, S.; Tiwari, S. K. Enhanced adsorption at ZnO nanoflakes@zeolite core shell interface: A study of changing adsorption dynamics. J. Environ. Chem. Eng. 2018, 6, 1424-1433.
  26. Batistela, V. R.; Fogaca, L. Z.; Fávaro, S. L.; Caetano, W.; Fernandes-Machado, N. R. C.; Hioka, N. ZnO supported on zeolites: Photocatalyst design, microporosity and properties. Colloids Surf. A: Physicochem. Eng. Asp. 2017, 513, 20-27.
  27. Panayotova, M.; Mintcheva, N.; Gicheva, G.; Djerahov, L.; Mirdzveli, N. Proceedings of 20th International Multidisciplinary Scientific GeoConference SGEM 2020, Albena, Bulgaria, 18 - 24 August 2020; p. 77-84.
  28. Yang, L.; Zhao, Q.; Willander, M.; Liu, X.; Fahlman, M.; Yang, J.H. Origin of the surface recombination centers in ZnO nanorods arrays by X-ray photoelectron spectroscopy. Appl. Sur. Sci. 2010, 256, 3592–3597.
  29. Sett, D.; Basak, D. Tuning the luminescence and UV photosensing properties of ZnO nanorods by strategic aqueous chemical growth. Mater. Res. Express 2015, 2, 105008.

Article full text

Download PDF