MACHINES

A validation approach for a FEA model of thermal distortion for CO-CR thin wall structures produced by LPBF process

  • 1 Ege University, 35050, Izmir, Turkiye; Laseral Ltd, 35050, Izmir, Turkiye
  • 2 Ege University, 35050, Izmir, Turkiye

Abstract

Laser Powder Bed Fusion (LPBF) is a prominent additive manufacturing process used for fabricating complex metallic structures, but it often encounters challenges related to thermal distortions and residual stresses, particularly in thin-walled structures. These issues compromise the integrity and dimensional accuracy of the parts. Finite Element Analysis (FEA) has been essential in simulating and understanding the thermal and mechanical behaviors during the LPBF process. This study focuses on validating a refined FEA model developed using ANSYS Additive Print (AAP) to predict the thermal distortions in CoCr thin-wall structures. The validation involves comparing simulation results with experimental data to verify the model’s effectiveness. The study demonstrates the integration of advanced simulation techniques in predicting distortions and stresses, thereby enhancing the reliability and accuracy of the manufacturing process.

Keywords

References

  1. Y. Zhang, Y. G. Jung, J. Zhang, Multiscale Modeling of Additively Manufactured Metals, 89 (2020)
  2. H. Tan, J. Chen, F. Zhang, X. Lin, W. Huang, Int. J. of Machine Tools and Manufacture, V 50, I 1, 1 (2010)
  3. N. Doynov, V. Michailov, Int. J. of A. M. Tech., 94 (2018)
  4. M. Lipcan, J. M. Balvers, M. P. Hartmann, App. Sci. and Mfg., V 107, 399 (2018)
  5. A. Olleak, Z. Xi, Int. J. of A. M. Tech., 115 (2021)
  6. G. Grebenisan, D. Negrau, N. Salem, A. S. of Sci. P. (2022)
  7. D. Jankovics, H. Gohari, A. Barari, CTO for A. M. of S. C. in ANSYS (2018)
  8. S. R. Thielen, R. Shane, "Additive print success probability estimation." U.S. Patent Application 15/013,791, (2017)
  9. H. Peng, M. Ghasri-Khouzani, S. Gong, R. Attardo, P. Ostiguy, Additive Manufacturing, V 22, 869 (2018)
  10. H. Vemanaboina, G. Edison, S. Akella, Int. J. for S. R. and D., 13 (2016)
  11. T. Mayer, G. Brandle, A. Schonenberger, R. Eberlein, Heliyon, V 6, I 5, e03987 (2020)
  12. L. E. Murr, S. M. Gaytan, D. A. Ramirez, E. Martinez, J. of MST, V 28, I 1, 1 (2012)
  13. P. Sun, Z. Z. Fang, Y. Zhang, Y. Xia, R. Chandran, Powder Technology, V 355, 328 (2019)
  14. N. K. Tolochko, M. K. Arshinov, A. V. Gusarov, V. I. Titov, T. Laoui, L. Froyen, Rapid Prototyping Journal, V 9, I 5, 314 (2003)
  15. A. R. Nassar, E. W. Reutzel, M. A. Johnson, J. of MSE, V 137, I 6, 061004 (2015)
  16. M. Chiumenti, M. Cervera, A. Salmi, N. Dialami, K. Matsui, Computational Mechanics, V 60, I 5), 883 (2017)
  17. M. Neikter, A. E. Jarfors, R. Törnberg, Procedia CIRP V 62, 361 (2017)
  18. A. Alafaghani, A. Qattawi, B. Alrawi, A Guzman, Procedia Manufacturing, V 10, 791 (2017)

Article full text

Download PDF