MACHINES

Exergy analysis of 160 MW three cylinder steam turbine segments

  • 1 Faculty of Engineering, University of Rijeka, Croatia
  • 2 Department of maritime sciences, University of Zadar, Croatia

Abstract

Exergy analysis of three cylinder steam turbine segments is performed in this research. The highest mechanical power of 47389.66 kW is developed in the first segment (Seg. I, which actually represents the entire HPC – High Pressure Cylinder). Intermediate Pressure Cylinder (IPC) is the dominant mechanical power producer of all cylinders and it develops 48.95% of cumulative mechanical power produced in the whole turbine. The outlet Low Pressure Cylinder (LPC) segments (Seg. VII and IX) have the highest exergy destructions and the lowest exergy efficiency (equal to 61.27%) of all turbine segments. The best exergy performance shows IPC segments – Seg. V has the lowest exergy destruction (equal to 363.84 kW), while Seg. II has the highest exergy efficiency (equal to 94.04%) of all turbine segments. Outlet LPC segments (Seg. VII and IX) are the most sensitive to the ambient temperature change – their exergy efficiency decreases for 3.19% when the ambient temperature increases from 5 °C to 45 °C.

Keywords

References

  1. Tanuma, T. (Ed.). (2017). Advances in steam turbines for modern power plants. Woodhead Publishing.
  2. Giampaolo, T. (2020). Gas turbine handbook: principles and practice. River Publishers.
  3. Anđelić, N., Lorencin, I., Mrzljak, V., & Car, Z. (2024). On the application of symbolic regression in the energy sector: Estimation of combined cycle power plant electrical power output using genetic programming algorithm. Engineering applications of artificial intelligence, 133, 108213. (doi:10.1016/j.engappai.2024.108213)
  4. Poljak, I., & Mrzljak, V. (2023). Thermodynamic Analysis and Comparison of Two Marine Steam Propulsion Turbines. NAŠE MORE: znanstveni časopis za more i pomorstvo, 70(2), 0-0. (doi:10.17818/NM/2023/2.2)
  5. Elhelw, M., Al Dahma, K. S., & el Hamid Attia, A. (2019). Utilizing exergy analysis in studying the performance of steam power plant at two different operation mode. Applied Thermal Engineering, 150, 285- 293. (doi:10.1016/j.applthermaleng.2019.01.003)
  6. Mrzljak, V., Anđelić, N., Lorencin, I., & Sandi Baressi Šegota, S. (2021). The influence of various optimization algorithms on nuclear power plant steam turbine exergy efficiency and destruction. Pomorstvo, 35(1), 69-86. (doi:10.31217/p.35.1.8)
  7. Aljundi, I. H. (2009). Energy and exergy analysis of a steam power plant in Jordan. Applied thermal engineering, 29(2-3), 324-328. (doi:10.1016/j.applthermaleng.2008.02.029)
  8. Poljak, I., Mrzljak, V., Senčić, T., & Pastorčić, D. (2024). Isentropic and exergy analyses of marine steam turbine segments at several loads. Scientific Journal of Maritime Research-Pomorstvo, 38(1). (doi:10.31217/p.38.1.8)
  9. Kaushik, S. C., Reddy, V. S., & Tyagi, S. K. (2011). Energy and exergy analyses of thermal power plants: A review. Renewable and Sustainable energy reviews, 15(4), 1857-1872. (doi:10.1016/j.rser.2010.12.007)
  10. Mrzljak, V., Prpić-Oršić, J., & Poljak, I. (2018). Energy power losses and efficiency of low power steam turbine for the main feed water pump drive in the marine steam propulsion system. Pomorski zbornik, 54(1), 37-51. (doi:10.18048/2018.54.03)
  11. Kostyuk, A., & Frolov, V. (1988). Steam and gas turbines. Mir Publishers.
  12. Koroglu, T., & Sogut, O. S. (2018). Conventional and advanced exergy analyses of a marine steam power plant. Energy, 163, 392-403. (doi:10.1016/j.energy.2018.08.119)
  13. Mrzljak, V., Jelić, M., Poljak, I., & Prpić-Oršić, J. (2023). Analysis and Comparison of Main Steam Turbines from Four Different Thermal Power Plants. Pomorstvo, 37(1), 58-74. (doi:10.31217/p.37.1.6)
  14. Mrzljak, V., Prpić-Oršić, J., Poljak, I., & Šegota, S. B. (2020). Exergy analysis of steam condenser at various loads during the ambient temperature change. Machines. Technologies. Materials., 14(1), 12-15.
  15. Zhao, Z., Su, S., Si, N., Hu, S., Wang, Y., Xu, J., ... & Xiang, J. (2017). Exergy analysis of the turbine system in a 1000 MW double reheat ultra-supercritical power plant. Energy, 119, 540-548. (doi:10.1016/j.energy.2016.12.072)
  16. Medica-Viola, V., Baressi Šegota, S., Mrzljak, V., & Štifanić, D. (2020). Comparison of conventional and heat balance based energy analyses of steam turbine. Pomorstvo, 34(1), 74-85. (doi:10.31217/p.34.1.9)
  17. Lemmon, E. W., Huber, M. L., & McLinden, M. O. (2010). NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties (REFPROP), version 9.0, National Institute of Standards and Technology. R1234yf. fld file dated December, 22, 2010.
  18. Kanoğlu, M., Çengel, Y. A. & Dincer, I. (2012). Efficiency Evaluation of Energy Systems. Springer Briefs in Energy. (doi:10.1007/978-1-4614-2242-6)
  19. Mrzljak, V., Jelić, M., Poljak, I., & Medica-Viola, V. (2023). Exergy analysis of supercritical CO2 system for marine diesel engine waste heat recovery application. Pomorski zbornik, 63, 39-62.
  20. Tan, H., Shan, S., Nie, Y., & Zhao, Q. (2018). A new boil-off gas re-liquefaction system for LNG carriers based on dual mixed refrigerant cycle. Cryogenics, 92, 84-92. (doi:10.1016/j.cryogenics.2018.04.009)
  21. Baressi Šegota, S., Lorencin, I., Anđelić, N., Mrzljak, V., & Car, Z. (2020). Improvement of marine steam turbine conventional exergy analysis by neural network application. Journal of Marine Science and Engineering, 8(11), 884. (doi:10.3390/jmse8110884)
  22. Erdem, H. H., Akkaya, A. V., Cetin, B., Dagdas, A., Sevilgen, S. H., Sahin, B., ... & Atas, S. (2009). Comparative energetic and exergetic performance analyses for coal-fired thermal power plants in Turkey. International Journal of Thermal Sciences, 48(11), 2179-2186. (doi:10.1016/j.ijthermalsci.2009.03.007)
  23. Mrzljak, V., Poljak, I., Jelić, M., & Prpić-Oršić, J. (2023). Thermodynamic Analysis and Improvement Potential of Helium Closed Cycle Gas Turbine Power Plant at Four Loads. Energies, 16(15), 5589. (doi:10.3390/en16155589)
  24. Tavana, M., Deymi-Dashtebayaz, M., Dadpour, D., & Mohseni- Gharyehsafa, B. (2023). Realistic energy, exergy, and exergoeconomic (3E) characterization of a steam power plant: multi-criteria optimization case study of mashhad tous power plant. Water, 15(17), 3039. (doi:10.3390/w15173039)
  25. Mrzljak, V., Poljak, I., & Ţarković, B. (2018). Exergy analysis of steam pressure reduction valve in marine propulsion plant on conventional LNG carrier. NAŠE MORE: znanstveni časopis za more i pomorstvo, 65(1), 24-31. (doi:10.17818/NM/2018/1.4)

Article full text

Download PDF