MATERIALS

Influence of Al2O3 content on the mechanical properties of sintered Al-10Cu-xAl2O3 composites

  • 1 Institute of Mechanics at Bulgarian Academy of Sciences, Bulgaria; Institute of Metal Science, Equipment and Technologies with Hydro- and Aerodynamics Centre "Acad. A. Balevski" at Bulgarian Academy of Sciences
  • 2 Institute of Mechanics at Bulgarian Academy of Sciences, Bulgaria

Abstract

This study investigates the influence of Al₂ O₃ content on the mechanical properties of sintered Al-10Cu-xAl₂ O₃ (x = 2.5, 5, and 7.5 wt.%) composite materials, produced via powder metallurgy and subjected to quasi-static and dynamic compressive loadings. Quasistatic tests were performed at a constant strain rate of 0.003 s⁻ ¹, while dynamic tests were conducted at strain rates corresponding to impact velocities of approximately 10 m/s and 20 m/s. The results indicate that a higher Al₂ O₃ content enhances the mechanical properties of the composite under both quasi-static and dynamic compression. The most significant improvements were observed under high strain rate impact loading, highlighting the potential of sintered Al-10Cu-xAl₂ O₃ for applications in dynamic environments.

Keywords

References

  1. A. Wąsik, B. Leszczyńska Madej, P. Noga. The Int. J. of Adv. Man. Tech (2024) 134:3611–3620
  2. A. Wasik, B. Leszczynska-Madej, M.Madej, M. Goły. Materials (2023) 16, 5492.
  3. Nassef AE, El-Katatny SM, El_Garaihy WH (2019). Adv Metallurg Mater Eng 2(1):71-80
  4. Elkatatny, S.; Alsharekh, M.F.; Alateyah, A.I.; El-Sanabary, S.; Nassef, A.; Kamel, M.; Alawad, M.O.; BaQais, A.; El-Garaihy, W.H.; Kouta, H. Appl. Sci. 2023, 13, 7483.
  5. M. N. Khan, S. Narayan, A. Rajeshkannan. AIMS Mat. Sci. (2019) 6(3): 441–453.
  6. Gökçe, A.; Findik, F.; Kurt, A.O. Pract. Metallogr. 2017, 54, 533–551.
  7. S. Jain, R.S Rana, P. Jain. Int. Res. J. of Eng. and Tech (2016), Vol: 03, Issue: 01
  8. M.N. Khan, S. Narayan, A. Rajeshkannan A.K. Jeevanantham. Materials Today: Proceedings 22 (2020) 2499–2508
  9. O. Emadinia, M. T. Vieira, M. F. Vieira. Met. 2020, 10, 1416
  10. AE Nassef, GA Ebrahim, AA El-Baghdady (2003) J. of Eng. and Appl. Sci. 50: 371-386.
  11. El-Kady, O.A.; Yehia, H.M.; Nouh, F.; Ghayad, I.M.; El-Bitar, T.; Daoush,W.M. Materials 2022, 15, 7116
  12. Kolev, M.; Drenchev, L.; Petkov, V.; Dimitrova, R. Metals 2023, 13, 131.
  13. Kolev, M.; Drenchev, L.; Petkov, V. Metals 2023, 13, 814. https://doi.org/10.3390/met13040814
  14. R. Krastev, V. Kavardzhikov, T. Simeonova. Math. Modeling (2024), Vol. 8 pp.27-31.
  15. S. LUO, Y. WU, B. CHEN, M. SONG, J. YI, B. GUO, Q. WANG, Y. YANG, W. LI, Z. YU. Trans. Nonferrous Met. Soc. China 32(2022) 3860−3872
  16. R. Ali, F. Ali, A. Zahoor, R. N. Shahida, N. H. Tariq, T. He, M. Shahzad, Z. Asghar, A. Shah, A. Mahmood, H. B. Awais. J. of Alloys and Comp. 889 (2021) 161531
  17. D. Kim, K. Kim, H. Kwon. Materials (2021), 14, 266.
  18. R. Malik, P. A. Bajakke, K. K. Saxena, A. Lakshmikanthan, A. S. Deshpande, S. Mabuwa, V. Masomi. Mater. Res. Express 9 (2022) 066507
  19. X. Tang, Z. Wang, J. Yin, J. Yi. Adv. in Mat. Sci. and Eng. 2021, Article ID 5518172, 9 pages
  20. M. Guden,T, E. Celik, E. Akar, S. Cetiner. Materials Characterization 54 (2005) 399– 408

Article full text

Download PDF