MATERIALS

Smelting and structure of high-entropy alloys of the FeNiCrCuAl system

  • 1 Physico-Technological Institute of Metals and Alloys, National Academy of Sciences, Kyiv, Ukraine
  • 2 Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Ukraine
  • 3 G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine

Abstract

This work was aimed to smelt high-entropy alloys (HEAs) based on inexpensive and common metallic elements using iron-based alloys, ligatures, commercially pure metals and study HEAs’ phase structure. High-entropy alloys of the FeNiCrCuAl system were smelted in air using induction furnace in a crucible with a rammed neutral lining made of aluminum and magnesium oxides. Elements of Fe, Ni, Cr, Cu, Al were added by way of high-alloyed cast iron or stainless-steel grade X10CrNiTi18-10 (EN 1.4541), low-carbon ferrochrome of industrial grade FeCr70C1, binary Cu-33Al ligature, tough-pitch copper and semi-finished nickel. The investigated alloys were prepared by lost foam and sand mold casting methods. A study of the microstructure showed the presence of rounded shape branches of dendrites, copper-rich interdendritic space and high-chromium carbides in the structure of samples. The phase composition of the as-cast FeNiCrCuAl alloys was represented by several phases: ordered solid solution with primitive cubic lattice of type B2, solid solutions with BCC and FCC lattices and complex carbides (FeCr)₇C₃.

Keywords

References

  1. J. -W. Yeh, Y. -L. Chen, S. -J. Lin, S. -K. Chen, Mater. Sci. Forum, 560, 1 (2007)
  2. Y. Zhang, Y. J. Zhou, Mater. Sci. Forum, 561 – 565, 1337 (2007)
  3. J. -W. Yeh, S. -K. Chen, S. -J. Lin, J. -Y. Gan, T. -S. Chin, T. -T. Shun, C. -H. Tsai, S. -Y. Chang, Adv. Eng. Mater., 6(5), 299 (2004)
  4. Y. Zhang, High-Entropy Materials: A Brief Introduction. (Springer Nature Singapore Pte Ltd. 2019, pp. 35–61). Y. Zhang, S. Guo, C.T. Liu, X.Yang, Phase formation rules. In: High-Entropy Alloys: Fundamentals and Applications. (Springer International Publishing, 2016, pp. 21–49)
  5. J. Y. Yang, Y. J. Zhou, Y. Zhang, Chin. Mater. Sci. Techn. Equip., 5, 61 (2007)
  6. J. W. Yeh, Ann. Chim. Sci. Mater., 31, 633 (2006)
  7. M. Slobodyan, E. Pesterev, A. Markov, Materials Today Communications, 36, 1-82 (2023)106422
  8. X. Wang, W. Guo, Y. Fu, J. Mater. Chem. A, 9(2), 663 (2021)
  9. V. O. Shcheretskyi, O. A. Shcheretskyi, R. A. Sergiienko, A. M. Verkovliuk, D. S. Kanibolotsky, L. D. Taranuhina, I. G. Byba, O. S. Roik, Casting processes, No3(157), 46 (2024) [in Ukrainian]
  10. O. Myslyvchenko, JOM 76, 3960 (2024).
  11. O. A. Shcheretskyi, R. A. Sergiienko, A. M. Verkovliuk, Casting processes, No2(148), 50 (2022) [in Ukrainian]
  12. A. M. Verkhovliuk, R. A. Sergiienko, O. A. Shcheretskyi, R. S. Serhiiko, O. G. Potrukh, D. S. Kanibolotsky, I. G. Byba, О. V. Zhelezniak, Casting processes, No4(158), 56 (2024) [in Ukrainian]
  13. Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, P. K. Liaw, Adv. Eng. Mater., 10(6), 534 (2008)
  14. X. Yang, Y. Zhang, Mater. Chem. Phys., 132(2-3), 233 (2012)
  15. Y. Zhang, Mater. Sci. Forum, 654 - 656, 1058 (2010)
  16. S. Guo, C. Ng, J. Lu, C. T. Liu, J. Appl. Phys., 109(10), 103505 (2011)
  17. G. Sheng, C. T. Liu, Prog. Nat. Sci.: Mater. Int., 21(6), 433 (2011)
  18. A. K. Singh, A. Subramaniam, J. Alloys Compd., 587, 113 (2014)
  19. C. T. Liu, Int. Met. Rev., 29(1), 168 (1984)
  20. J. H. Zhu, P. K. Liaw, C. T. Liu, Mater. Sci. Eng. A, 239 – 240, 260 (1997)
  21. O. M. Myslyvchenko Features of structure formation and properties of high-entropy alloys of the Cr-Al-Fe-Co-Ni-Cu-Mn- V system: dis. ...cand. tech. sciences: 05.16.01. Kyiv, (2016) pp. 21-28 [in Ukrainian]
  22. H. Mao, H. L. Chen, Q. J. Chen, Phase Equilibria Diffus., 38, 353 (2017)

Article full text

Download PDF