Thermodynamic evaluation of a 250 MW three-cylinder steam turbine from CCPP
In this paper are presented isentropic analysis results of a steam turbine, their cylinders and cylinder parts which nominal power is equal to 250 MW. The analyzed steam turbine is a complex three-cylinder turbine which operates in a CCPP (Combined Cycle Power Plant). Considering all cylinders, the dominant mechanical power producer in the observed turbine is LPC (Low Pressure Cylinder) which produces 111.80 MW of mechanical power in real (polytropic) steam expansion process (almost half of the real mechanical power produced in the whole turbine). Developed mechanical power in turbine cylinders and isentropic losses are directly proportional – higher produced mechanical power will result in higher isentropic losses and vice versa. Whole analyzed steam turbine, their cylinders and cylinder parts show very good isentropic performance and high isentropic efficiencies of around 90%. The isentropic performance of the whole analyzed steam turbine, their cylinders and cylinder parts is in the range of the steam turbines (and their cylinders) from supercritical and ultrasupercritical power plants which are proven to be the best steam turbines from isentropic point of view.