MATERIALS

Relationship between mechanical parameters of shear and tensile strength of polymer materials obtained by FDM extrusion of objects

  • 1 Bulgarian Academy of Science, IICT, Sofia, Bulgaria

Abstract

This work examines the relationship between two of the most important mechanical parameters: shear and tensile strength in 3D printed polymer test specimens using Fused Deposition Modeling. Different types of materials were used, including those that are mechanically strong, easy to print, flexible, and heat-resistant, to determine their behavior. The study was conducted by testing test specimens printed with the same characteristics of percentage filling and pattern, layer height, and printing direction. The ratio between the shear strength and tensile strength of seven polymer materials with 30 % infill in percent was calculated. The values were compared with those of metals and polymers with 100 % density, and an estimate of the coefficient between the two parameters was made.

Keywords

References

  1. F. Calignano, D. Manfredi, E. P. Ambrosio, S. Biamino, M. Lombardi, E. Atzeni, A. P. SalmiMinetola, L. F. Iuliano, Overview on additive manufacturing technologies, Proc. IEEE, 105, 593–612, (2017). DOI: 10.1109/JPROC.2016.2625098
  2. S. Wickramasinghe, T. Do, P. Tran, FDM-Based 3D Printing of Polymer and Associated Composite: A Review on Mechanical Properties, Defects and Treatments, Polymers, 12, 1529, (2020), https://doi.org/10.3390/polym12071529.
  3. P. K. Penumakala, J. Santo, A. Thomas, A critical review on the fused deposition modeling of thermoplastic polymer composites, Composites Part B: Engineering, Volume 201, 108336, 2020, ISSN 1359-8368, https://doi.org/10.1016/j.compositesb.2020.108336
  4. J. Zaburko, A. Urzędowski, J. Szulżyk-Cieplak, A. Trnik, Z. Suchorab, and G. Lagod, Analysis of thermal operating conditions of 3D printers with printing chamber, AIP Conference Proceedings, Volume 2429: 020020, 2021, https://doi.org/10.1063/5.0070165.
  5. J. M. Reverte, M. Caminero, J. Chacon, E. García-Plaza, P. López, J.-P. Bécar, Mechanical and Geometric Performance of PLA-Based Polymer Composites Processed by the Fused Filament Fabrication Additive Manufacturing Technique, Materials, 13, 10.3390/ma13081924, (2020).
  6. E. García-Plaza, P. López, M. Caminero, J. Chacon, Analysis of PLA Geometric Properties Processed by FFF Additive Manufacturing: Effects of Process Parameters and Plate- Extruder Precision Motion, Polymers, 11, 10.3390/polym11101581, (2019).
  7. C. Majewski, N. Hopkinson, ―Effect of section thickness and build orientation on tensile properties and material characteristics of laser sintered nylon-12 parts‖, Rapid Prototyping Journal, 17(3), 176-180, (2011).
  8. T. Kalpakoglou and S. Yiatros, Metal foams: A review for mechanical properties under tensile and shear stress, Front. Mater., 9:998673, (2022), doi: 10.3389/fmats.2022.998673.
  9. L. Jiang, Y. Zhou, F. Jin, Z. Hou, Influence of Polymer Matrices on the Tensile and Impact Properties of Long Fiber- Reinforced Thermoplastic Composites, Polymers, 15, 408, (2023), https://doi.org/10.3390/polym15020408
  10. F. Gregory, Steel strength comparison: tensile, compression, torsion, bending, shear, Thermal processing, pp. 35-37, (2025), https://thermalprocessing.com/?s=STEEL+STRENGTH+CO MPARISON
  11. K. Miyoshi, D. H. Buckley, Friction and metal transfer for single-crystal silicon carbide in contact with various metals in vacuum, Work of the US Gov. Public Use Permitted./ NTRS - NASA Technical Reports Server, Document ID: 19780013351, PROJECT: RTOP 506-16, Last Modified: July 15, 2025, https://ntrs.nasa.gov/citations/19780013351.
  12. R. Tatara, Estimating Ultimate Shear Strength from Ultimate Tensile Strength of Aluminum and its Alloys for Blanking or Piercing, Online Journal of Mechanical Engineering, 1(1), 37–41, (2022). https://www.scipublications.com/journal/index.php/ojme/arti cle/view/501, DOI: 10.31586/ojme.2022.501
  13. R. K. Guduru, K. A. Darling, R. Kishore, R. O. Scattergood, C. C. Koch, K. L. Murty, Evaluation of mechanical properties using shear–punch testing. Materials Science and Engineering: A, 395. pp. 307-314. (2005). 10.1016/j.msea.2004.12.048.
  14. V. Conev, Mechanical properties of cold drawn steels, J. of the Bal. Trib. Assoc., Book 4, Vol.31, (2025). (to be published)
  15. G. Genov, Revisiting the rule-of-thumb dependencies of the shear strength and the hardness on the yield and the ultimate strengths, (2020). 10.13140/RG.2.2.24105.72807, https://www.researchgate.net/publication/355208819_REVIS ITING_THE_RULE-OF-THUMB_DEPENDENCIES_OF_THE_SHEAR_STRENGT H_AND_THE_HARDNESS_ON_THE_YIELD_AND_THE _ULTIMATE_STRENGTHS.
  16. D. K. Matlocka, S. Kanga, E. De Moora, J. G. Speera, Applications of rapid thermal processing to advanced high-strength sheet steel developments, Materials Characterization, 166, 110397, (2020), https://doi.org/10.1016/j.matchar.2020.110397
  17. F. Xie, W. Tian, Sh. Li, P. Diez, S. Zlotnik, Al. G. Gonzalez, Experimental Study on the Structural Performance of Glass- Fiber-Reinforced Concrete Slabs Reinforced with Glass- Fiber-Reinforced Polymer (GFRP) Bars: A Sustainable Alternative to Steel in Challenging Environments, Polymers (Basel), 17(8):1068, (2025), doi: 10.3390/polym17081068.
  18. M. A. Muflikhun, B. Fiedler, Failure Prediction and Surface Characterization of GFRP Laminates: A Study of Stepwise Loading, Polymers (Basel). 14(20):4322, (2022), doi: 10.3390/polym14204322.
  19. K. Schricker, L. Samfaßa, M. Grätzel, G. Ecke, J. P. Bergmann, Bonding mechanisms in laser-assisted joining of metal-polymer composites, Journal of Advanced Joining Processes, 1, 100008, (2020).
  20. I. S. Menezes, T. R. Ferreira, C. G. F. deSouza, R. Prataviera, F. A. R. Lahr, L. de Freitas, H. F. dos Santos, and A. L. Christoforo, "Relationship between characteristic values of shear strength parallel to grain and tensile strength perpendicular to grain for tropical woods," BioResources 19(4), 7408–7417, (2024).
  21. M. Paneva and P. Panev, "Features of FDM printing of test specimens,", International Conference Automatics and Informatics (ICAI), Varna, Bulgaria, Published by IEEE, pp. 266-270, 2024, doi: 10.1109/ICAI63388.2024.10851504.
  22. International Standard ASTM D732 – 17, Standard Test Method for Shear Strength of Plastics by Punch Tool, United States (2017), Last visited August 2025, https://storethinghiem.vn/uploads/files/D%20732%20- %2017.pdf
  23. BDS EN ISO 527-2:2012; Plastics—Determination of tensile Properties—Part 2: Test Conditions for Molding and Extrusion Plastics, Bulgarian Institute of Standardization: Sofia, Bulgaria, (2012).

Article full text

Download PDF