Innovative approach to contaminated soil phytoremediation: Heavy metal phytoextraction using energy crops

  • 1 Institute of Environment and Ecology, Agriculture Academy of Vytautas Magnus University, Lithuania
  • 2 Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Sweden

Abstract

Heavy metal accumulation potential in the biomass and different plant parts of the selected species of energy crops cultivated on contaminated soil was evaluated. Phytoextraction potential, biomass yield and qualitative parameters of bioenergy plants grown on heavy metal contaminated soil has been measured. Finally heavy metal influence on biomass utilization possibilities, energy recovery and further safe use of the rest products has been evaluated. Demonstrated possibilities to grow bioenergy plants on moderately contaminated soil could increase the use of marginal lands, decrease land use competition between food and liquid biofuels and provide options for a gentle and cost-effective remediation.

Keywords

References

  1. Alloway, B. J. (ed.) (2013). Heavy metals in soils. Trace metals and metalloids in soils and their bioavailability. Dordrecht: Springer Science + Business Media.
  2. Baker, A., J., M., Brooks, R., R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry. Biorecovery, vol. 1, pp. 81-126.
  3. Brunetti, B., Farrag, K., Rovira, P.S., Nigro, F., Senesi, N. (2011). Greenhouse and field studies on Cr, Cu, Pb and Zn phytoextraction by Brassica napus from contaminated soils in the Apulia region, Southern Italy. Geoderma, vol. 160, pp. 517-523.
  4. DGE Baltic Soil and Environment. (2010). Panevėžio miesto savivaldybės Molainių buvusių nuotėkų filtracijos laukų detalieji ekogeologiniai tyrimai [Detailed ecogeological study about former septic drain fields in Molainiai, Panevėžys municipality]. P. 54. In Lithuanian. Access to the document through the Municipality of Panevėžys city.
  5. Geotestus. (2013). Buvusių nuotekų filtracijos laukų užterštos teritorijos kontrolinis ekogeologinis tyrimas Panevėžio apsk., Panevėžio m. sav., Molainių g. [Ecogeological study about contaminated site at the former septic drain field in Molainiai, municipality of Panevėžys]. P. 10. In Lithuanian. Access to the document through the Municipality of Panevėžys city.
  6. Ghnaya, A. B., Charles, G., Hourmant, A., Hamida, J. B., Branchard, M. (2009). Physiological behaviour of four rapeseed cultivar (Brassica napus L.) submitted to metal stress. Comptes Rendus Biologe, vol. 332, pp. 363-370.
  7. Khalid, S., Shahid, M., Niazi, N. K., Murtaza, B., Bibi, I., Dumat, C. (2017). A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, vol. 182, pp. 247- 268.
  8. Lasat, M. M. (2000). Phytoextraction of metal from contaminated soil: a review of plant/soil/metal incineration and assessment of pertinent agronomic issues. Journal of Hazardous Substances Research, vol. 2, p. 25.
  9. Marchiol, L., Assolari, S., Sacco, P., Zerbi, G. (2004). Phytoextraction of heavy metal by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environmental Pollution, vol. 132, pp. 21-27.
  10. Martinez-Sanchez, M. J., Garcia-Lorenzo, M. L., Perez-Sirvent, C., Bech, J. (2012). Trace element accumulation in plants from an aridic area affected by mining activities. Journal of Geochemical Exploration, vol. 123, pp. 8-12.
  11. Ministry of Environment of the Republic of Lithuania (2011). Medienos kuro pelenų tvarkymo ir naudojimo taisyklės [Rules for the utilization of wood fuel ashes]. The recent version is valid from 2015-09-01. No 5-168. In Lithuanian. Latest access 2018-04-05 at: https://www.etar.lt/portal/lt/legalAct/TAR.AAC696779441.
  12. Ministry of Environment of the Republic of Lithuania (2012). Užterštų teritorijų tvarkymo 2013-2020 planas [Plan for the management of contaminated sites in 2013-2020]. The recent version is valid from 2016-04- 27. No 115-5842. In Lithuanian. Latest access 2018-04-05 at: https://www.e-tar.lt/portal/lt/legalAct/TAR.ACB96E4E6DA3.
  13. Peer, W. A., Baxter, I. R., Richards, E. L., Murphy, A. S. (2004). Phytoremediation and hyperaccumulator plants // Tamas, M. J., Martinola, E. (eds). (2004). Molecular Biology of Metal Homeostasis and Detoxification, pp. 299-341.
  14. Prasad, M. N. V., de Oliveira Freitas, H. M. (2003). Metal hyperaccumulation in plants – biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology, vol. 6, pp. 285-305.
  15. Reeves, R. D., Baker., A. J. M., Jaffre, T., Erskine, P. D., Echevarria. G., van der Ent, A. (2017). A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist, vol. 218, pp. 407-411.
  16. USEPA (2008). Green remediation: incorporating sustainable environmental practices into remediation of contaminated sites. Cincinnati: National Service Centre for Environmental Publications. Latest access 2018- 04-05 at https://www.epa.gov/sites/production/files/2015-04/documents/green-remediation-primer.pdf
  17. Wuana, R. A., Okieimen, F. E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology, vol. 2011, p. 20.

Article full text

Download PDF