SCIENCE

Terahertz emission induced by self-oscillations of current in semiconductor resonant tunneling structures

  • 1 P.n. Lebedev physical institute of russian academy of sciences, Moscow, Leninskii prosp. 53

Abstract

Based on the simultaneous measurements of radio-frequency intrinsic self-oscillations of current and terahertz (THz) light emission from a 30-period GaAs/AlGaAs weakly-coupled superlattice, it was concluded that self-oscillations of current arise due to the cyclic process of the electric-field domain boundary spatial expansion and shrinkage. The domain boundary expands over several SL periods due to the energy dissipation of tunneling electrons, resulting in the carrier trapping in several SL periods behind the leading edge of the domain boundary. In this region, the charge accumulation gives rise to the resonant detuning of subbands in adjacent quantum wells (QWs), creating the population inversion between the two subbands, which ensure the resonant tunneling along the SL axis. The electrons injected from the cathode restore the resonant coupling of subbands, the lower subband is emptied, and the intersubband radiative transitions allowed. The electroluminescence (EL) spectra of the SL demonstrate the main peak with the left and the right sidebands. The main peak is related to the intersubband electron transition energy, while the sidebands are associated with the resonant detuning energy of subbands in adjacent QWs (~ 4 meV). The two-photon pulsed THz emission (~ 4 meV) from a double-barrier GaAs/AlAs resonant tunneling diode biased into self-oscillation regime confirms the last assertion. There is the same cyclic mechanism of relaxation self-oscillations of current (accumulation and drain type), where the first THz pulse is triggered due to the carrier trapping by miniband states, resulting in the miniband energy shift up to higher energies. After the trap release time, the electrons lost their energy via the second THz pulse emission, and the miniband gets back to its steady state.

Keywords

References

  1. L. Esaki, New phenomenon in narrow Ge P-N junction., Phys. Rev. 109, 2, 603 (1958); L. Esaki, Y. Miyahara, New device using tunneling process in narrow p-n junction., Solid State Electronics 1, 1, 13 (1960)
  2. G. Fuller, G. W. Wooding, D. Sterzer, D. E. Nelson, Comments on tunnel diode microwave oscillator, Proc. IRE, 49, 1689 (1961); J. E. Houldin, R. A. Whitney, The tunnel diode as a relaxation oscillator, Electron. Eng., 34, 552 (1962)
  3. W. F. Chow, Principles of tunnel diode circuits, Wiley, N. Y. (1964)
  4. C. Kidner, I. Mehdi, J. R. East, G. I. Haddad, Bias circuit instabilities and their effect on the d.c. current-voltage characteristics of double-barrier resonant tunneling diodes, Solid State Electronics 34, 149 (1991).
  5. S. H. Kwok, T. B. Norris, L. L. Bonilla, J. Galan, J. A. Cuesta, F. C. Martinez, J. M. Molera, H. T. Grahn, K. Ploog, R. Merlin, Domain-wall kinetics and tunneling-induced instabilities in superlattices, Phys. Rev. B 51, 10171 (1995); J. Kastrup, R. Hey, K. H. Ploog, H. T. Grahn, L. L.Bonilla, M. Kindelan, M. Moscoso, A. Wacker, J. Galan, Electrically tunable GHz oscillations in doped GaAs-AlAs superlattices, Phys. Rev. B 55, 2476 (1997).
  6. G. K. Rasulova, Yu. A. Efimov, V.N. Murzin, Current bistability and switching in weakly coupled superlattices GaAs/AlGaAs, J. Appl. Phys. 82, 3381 (1997), doi.org/10.1063/1.365651
  7. L. L. Bonilla, J. Galan, J. A. Cuesta, F. C. Martinez, J. M. Molera, Dynamics of electric-field domains and oscillations of the photocurrent in a simple superlattice model, Phys. Rev. B 50, 8644 (1994); O. M. Bulashenko, M. J. Garcia, L. L. Bonilla, Chaotic dynamics of electric-field domains in periodically driven superlattices, Phys. Rev. B 53, 10008 (1996).
  8. G. K. Rasulova, P. N. Brunkov, I. V. Pentin, A. Yu. Egorov, D. A. Knyazev, A. V. Andrianov, A. O. Zakhar’in, S. G. Konnikov, and G. N. Goltsman, A weakly coupled semiconductor superlattice as a potential for a radio frequency modulated terahertz light emitter, Appl. Phys. Lett. 100, 131104 (2012), doi: 10.1063/1.3696673
  9. G. K. Rasulova, I. V. Pentin, P. N. Brunkov, A. Yu. Egorov, Electric-field domain boundary instability in weakly coupled semiconductor superlattices, J. Appl. Phys., 119, 204303 (2016), doi.org/10.1063/14952379
  10. N. Orihashi, S. Suzuki, M. Asada, One THz harmonic oscillation of resonant tunneling diodes, Appl. Phys. Lett. 87, 233501 (2005), doi: 10.1063/1.2139850; S. Suzuki, M. Asada, A. Teranishi, H. Sugiyama, H. Yokoyama, Fundamental oscillation of resonant tunneling diodes above 1 THz at room temperature, Appl. Phys.Lett. 97, 242102 (2010), doi:10.1063/1.3525834; M. Asada, S. Suzuki, Terahertz Emitter Using Resonant-Tunneling Diode and Applications, Sensors 21, 1384 (2021), doi.org/10.3390/s21041384
  11. G. K. Rasulova, I. V. Pentin, Yu. B. Vakhtomin, K. V. Smirnov, R. A. Khabibullin, E. A. Klimov, A. N. Klochkov, G. N. Goltsman, Pulsed terahertz radiation from a double-barrier resonant tunneling diode biased into self-oscillation regime, J. Appl. Phys. 128, 224303 (2020), doi.org/10.1063/5.0022052

Article full text

Download PDF