SOCIETY
The impact of anthropogenic activity on the global environment
- 1 University ―Pr. Assen Zlatarov Burgas Faculty of Real Sciences
Abstract
The state of the environment is influenced by a series of complex factors as well as by its constituent components. The composition of the components of the environment is undergoing to a variable dynamic process of both proper composition and structure. The anthropogenic activity that has a reference point to ensure the growing demands of the population has a generally negative impact at the current stage upon the state of the climate that comes as a result of the emissions of polluting green house gases as well as polluting particles in the form of aerosols. Consecutive effects with their states in the form of steps are described by a special diagram that can be called the cyclic diagram of anthropogenic activities. This diagram shows the current real representation of the actual state of the Biosphere as well as the measures that could be taken to improve the state of the Biosphere. Human activity creates a stress on the environment. Land, air, and water are inundated with the detrimental effects of industry. Air has received more attention and publicity than land and water in terms of the pollution it suffers. Besides, air pollution at some point affects land and water, either directly or indirectly.
Keywords
References
- Folke, C., R. Biggs, A. V. Norström, B. Reyers, and J. Rockström. 2016. Social-ecological resilience and biosphere-based sustainability science. Ecology and Society 21(3):41.http://dx.doi.org/10.5751/ES-08748-210341
- Gary M. Lovett, Timothy H. Tear, David C. Evers, Stuart E.G. Findlay, B. Jack Cosby, Judy K. Dunscomb, Charles T. Driscoll, Kathleen C. Weathers, Effects of Air Pollution on Ecosystems and Biological Diversity in the Eastern United States, 2009, Annals of the New York Academy of Science, https://doi.org/10.1111/j.1749-6632.2009.04153.x
- John J. Couture, Richard L. Lindroth, Climate Change, Air Pollution and Global Challenges, Developments in Environmental Science, 2013
- Joel C. Gill, Bruce D. Malamud, Anthropogenic processes, natural hazards, and interactions in a multi-hazard framework, Earth-Science Reviews, Vol. 166, 2017, 246-269, ISSN 0012-8252, https://doi.org/10.1016/j.earscirev.2017.01.002.
- Understanding and Responding to Climate Change: Highlights of National Academies Reports. National Research Council. (2008). The National Academies Press, Washington, DC, USA.
- Methane: A crucial opportunity in the climate fight, https://www.edf.org/climate/methane-crucial-opportunity-climate-fight
- Svetlana Jovanović, Switching from coal, oil to natural gas accelerates climate change – study, (2019), Environment, https://balkangreenenergynews.com/switching-from-coal-oil-to-natural-gas-accelerates-climate-change-study/
- Andrew Moore, Climate Change is Making Wildfires Worse — Here’s How,
- 2022, https://cnr.ncsu.edu/news/category/research-innovation/fer-research/
- Carslaw, K.S., Gordon, H., Hamilton, D.S. et al. Aerosols in the Pre-industrial Atmosphere. Curr Clim Change Rep 3, 1–15 (2017). https://doi.org/10.1007/s40641-017-0061-2
- S. Twomey, Pollution and the planetary albedo, Atmospheric Environment, Volume 8, Issue 12, 1974, Pages 1251-1256, ISSN 0004-6981, https://doi.org/10.1016/0004-6981(74)90004-3.
- Safriel, U., 2009: Deserts and desertification: Challenges but also opportunities. L. Degrad. Dev., 20, 353–366, doi:10.1002/ldr.935.
- Gbeckor-Kove, N., 1989: Drought and Desertification. World Meteorological Organization, Geneva, Switzerland, 41–73, 286 pp.
- Maliva, R., and T. Missimer, 2012: Aridity and drought. In: Arid Lands Water Evaluation and Management [Maliva, R. and T. Missimer (eds.)]. Springer, Berlin, Germany, pp. 21–39.
- J. Spinoni, P. Barbosa, M. Cherlet, G. Forzieri, N. McCormic, G. Naumnann, J. Voght, A. Dosio, How will the progressive global increase of arid areas affect population and land-use in the 21st century?, Global and Planetary Change, volume 205, (2021), https://doi.org/10.1016/j.gloplacha.2021.103597
- Bai, Z. G., Dent, D. L., Olsson, L., & Schaepman, M. E. (2008). Global assessment of land degradation and improvement: 1. identification by remote sensing (No. 5). ISRIC-World Soil Information.
- De Vente, J., & Poesen, J. (2005). Predicting soil erosion and sediment yield at the basin scale: scale issues and semi-quantitative models. Earth-science reviews, 71(1-2), 95-125.
- Cao S, Tian T, Chen L, Dong X, Yu X, Wang G. Damage caused to the environment by reforestation policies in arid and semi-arid areas of China. Ambio. 2010 Jun;39(4):279-83. doi: 10.1007/s13280-010-0038-z. PMID: 20799677; PMCID: PMC3357704.
- Katyal, Jagdish C.; Vlek, Paul L. G. (2000) : Desertification: Concept, causes and amelioration, ZEF Discussion Papers on Development Policy, No. 33, University of Bonn, Center for Development Research (ZEF), Bonn
- Bai, Z. G., Wu, Y. J., Dent, D. L., Zhang, G. L., Dijkshoorn, J. A., van Engelen, V. W. P., & van Lynden, G. W. J. (2010). Land degradation and improvement in China 2. Accounting for soils, terrain and land use change. ISRIC Report 2010-05.
- Becker, A. (n.d.). Rates of Deforestation & Reforestation in the U.S. Retrieved from Seattle Pi: <https://education.seattlepi.com/rates-deforestation-reforestation-us-3804.html>
- Crowther, T., Glick, H., Covey, K., & al, e. (2015, September 2). Mapping tree density at a global scale. Nature(525), 201-205. Retrieved from <https://www.nature.com/articles/nature14967>
- Lanfredi, M., Coppola, R., Simoniello, T., Coluzzi, R., D'Emilio, M., Imbrenda, V., & Macchiato, M. (2015). Early identification of land degradation hotspots in complex bio-geographic regions. Remote Sensing, 7(6), 8154-8179.
- Ravi, S., Breshears, D. D., Huxman, T. E., & D'Odorico, P. (2010). Land degradation in drylands: Interactions among hydrologic–aeolian erosion and vegetation dynamics. Geomorphology, 116(3-4), 236-245.
- Nicholson, S. E., C. J. Tucker, and M. B. Ba. “Desertification, Drought, and Surface Vegetation: An Example from the West African Sahel.” Bulletin of the American Meteorological Society 79, no. 5 (1998): 815–29. http://www.jstor.org/stable/26215067.
- J. Huang, Y. Li, C. Fu, F. Chen, Q. Fu, A. Dai, M. Shinoda, Z. Ma, W. Guo, Z. Li, L. Zhang, Y. Liu, H. Yu, Y. He, Y. Xie, X. Guan, M. Ji, L. Lin, S. Wang, H. Yan, G. Wang, Dryland climate change: Recent progress and challenges, Rev. Geophys., 55, 719– 778, doi:10.1002/2016RG000550.
- Evan, A. T., D. J. Vimont, A. K. Heidinger, J. P. Kossin, and R. Bennartz (2009), The role of aerosols in the evolution of tropical North Atlantic Ocean temperature anomalies, Science, 324(5928), 778–781, doi:10.1126/science.1167404.
- DeMott, P. J., K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. D. Brooks, A. J. Prenni, and S. M. Kreidenweis (2003), African dust aerosols as atmospheric ice nuclei, Geophys. Res. Lett., 30(14), 1732, doi:10.1029/2003GL017410.
- Huang, J., B. Lin, P. Minnis, T. Wang, X. Wang, Y. Hu, Y. Yi, and J. K. Ayers (2006a), Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia, Geophys. Res. Lett., 33, L19802, doi:10.1029/2006GL026561.
- Huang, J., T. Wang, W. Wang, Z. Li, and H. Yan (2014), Climate effects of dust aerosols over East Asian arid and semiarid regions, J. Geophys. Res. Atmos., 119, 11398–11416, doi:10.1002/2014JD021796.
- Hansen, J. E., M. Sato, and R. Ruedy (1997), Radiative forcing and climate response, J. Geophys. Res., 102(D6), 6831–6864, doi:10.1029/96JD03436.
- Mihai Petrov, Relational empirical study of outgoing longwave radiation-albedo-temperature of the atmosphere-earth system under the influence of carbon dioxide pollutants. Oxidation Communications 45, No 2, 350-382 (2022)
- 32. Twomey, S. (1977), The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci., 34, 1149–1152, doi:10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.
- Lohmann, U., and J. Feichter (2005), Global indirect aerosol effects: A review, Atmos. Chem. Phys., 5, 715–737, doi:10.5194/acp-5-715-2005.
- Takemura, T., Y. J. Kaufman, L. A. Remer, and T. Nakajima (2007), Two competing pathways of aerosol effects on cloud and precipitation formation, Geophys. Res. Lett., 34, L04802, doi:10.1029/2006GL028349.
- Andreae, M. Q., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. Silva-Dias (2004), Smoking rain clouds over the Amazon, Science, 303(5662), 1337–1342, doi:10.1126/science.1092779.
- Drought and heat exacerbate wildfires, 30 July 2018, https://public.wmo.int/en/media/news/drought-and-heat-exacerbate-wildfires
- Wildfire management, https://www.drought.gov
- Climate and changes in the albedo of the surface, https://www.britannica.com/science/climate-meteorology/Climate-humans-and-human-affairs
- Deforestation: causes, consequences and climate change , 2022,https://ecotree.green/en/blog/deforestation-causes-consequences-and-climate-change
- Shan, W., Xu, Z., Guo, Y. et al. Geological methane emissions and wildfire risk in the degraded permafrost area of the Xiao Xing’an Mountains, China. Sci Rep 10, 21297 (2020). https://doi.org/10.1038/s41598-020-78170-z
- Climate change indicator. Tropical cyclone activity. https://www.epa.gov/climate-indicators/climate-change-indicators-tropical-cyclone-activity
- Met Office: Atmospheric CO2 now hitting 50% higher than pre-industrial levels, https://www.weforum.org/agenda/2021/03/met-office-atmospheric-co2-industrial-levels-environment-climate-change/
- Chu EW, Karr JR. Environmental Impact: Concept, Consequences, and Measurement. Reference Module in Life Sciences. 2017:B978-0-12-809633-8.02380-3. doi: 10.1016/B978-0-12-809633-8.02380-3. Epub 2016 Oct 31. PMCID: PMC7157458.
- Criteria Air Pollutants https://www.epa.gov/criteria-air- pollutants
- Lawrence D, Coe M, Walker W, Verchot L and Vandecar K (2022) The Unseen Effects of Deforestation: Biophysical Effects on Climate. Front. For. Glob. Change 5:756115. doi: 10.3389/ffgc.2022.756115
- Shan, W., Xu, Z., Guo, Y. et al. Geological methane emissions and wildfire risk in the degraded permafrost area of the Xiao Xing’an Mountains, China. Sci Rep 10, 21297 (2020). https://doi.org/10.1038/s41598-020-78170
- Laris, P., Koné, M., Dembélé, F., Rodrigue, C. M., Yang, L., Jacobs, R., and Laris, Q.: Methane gas emissions from savanna fires: what analysis of local burning regimes in a working West African landscape tell us, Biogeosciences, 18, 6229–6244, https://doi.org/10.5194/bg-18-6229-2021, 2021.
- R B Jackson et al Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources 2020 Environ. Res. Lett. 15 071002DOI 10.1088/1748-9326/ab9ed2
- Mike D. Flannigan, Meg A. Krawchuk, William J. de Groot, B. Mike Wotton and Lynn M. Gowman, Implications of changing climate for global wildland fire, International Journal of Wildland Fire 2009, 18, 483–507, www.publish.csiro.au/journals/ijwf
- Penttilä A, Muinonen K, Ihalainen O, Uvarova E, Vuori M, Xu G, Näränen J, Wilkman O, Peltoniemi J, Gritsevich M, Järvinen H and Marshak A (2022) Temporal Variation of the Shortwave Spherical Albedo of the Earth. Front. Remote Sens. 3:790723. doi: 10.3389/frsen.2022.790723
- Measuring Earth's albedo, https://earthobservatory.nasa.gov/images/84499/measuring-earths-albedo
- Desertification and climate change in Africa, Policy Brief No. 1, 2020, https://agnes-africa.org/wp-content/uploads/2020/07/Policy-brief-1_Desertification-_Final_09032020.pdf