SCIENCE

Isentropic analysis of entire intermediate pressure steam turbine cylinder and cylinder segments

  • 1 Faculty of Engineering, University of Rijeka, Croatia

Abstract

In this paper is performed an isentropic analysis of the entire Intermediate Pressure Cylinder (IPC) and all of his four Segments. Obtained results show that the first Segment (Seg. 1) is the dominant mechanical power producer of all Segments and it produces 16816.70 kW of mechanical power in the real (polytropic) expansion process. Analyzed IPC produces more than half mechanical power of the entire turbine in which he operates (in real expansion process IPC produces mechanical power equal to 58499.48 kW). Isentropic loss and isentropic efficiency of IPC Segments are reverse proportional – Seg. 3 which has the highest isentropic loss simultaneously has the lowest isentropic efficiency (equal to 82.44%), while Seg. 4 which has the lowest isentropic loss has the highest isentropic efficiency (equal to 87.26%). Entire IPC has an isentropic efficiency equal to 87.78%. Any improvements and modifications which can potentially be performed in the observed IPC should firstly be based on the turbine stages mounted inside Seg. 3.

Keywords

References

  1. Rosen, M. A. (2001). Energy-and exergy-based comparison of coal-fired and nuclear steam power plants. Exergy, An International Journal, 1(3), 180-192. (doi:10.1016/S1164-0235(01)00024-3)
  2. Elhelw, M., & Al Dahma, K. S. (2019). Utilizing exergy analysis in studying the performance of steam power plant at two different operation mode. Applied Thermal Engineering, 150, 285- 293. (doi:10.1016/j.applthermaleng.2019.01.003)
  3. Noroozian, A., Mohammadi, A., Bidi, M., & Ahmadi, M. H. (2017). Energy, exergy and economic analyses of a novel system to recover waste heat and water in steam power plants. Energy conversion and management, 144, 351-360. (doi:10.1016/j.enconman.2017.04.067)
  4. Tontu, M., Sahin, B., & Bilgili, M. (2019). Using energy and exergy analysis to compare different coal-fired power plants. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-16. (doi:10.1080/15567036.2019.1696429)
  5. Mrzljak, V., Anđelić, N., Lorencin, I., & Sandi Baressi Šegota, S. (2021). The influence of various optimization algorithms on nuclear power plant steam turbine exergy efficiency and destruction. Pomorstvo, 35(1), 69-86. (doi:10.31217/p.35.1.8)
  6. Burin, E. K., Vogel, T., Multhaupt, S., Thelen, A., Oeljeklaus, G., Görner, K., & Bazzo, E. (2016). Thermodynamic and economic evaluation of a solar aided sugarcane bagasse cogeneration power plant. Energy, 117, 416-428. (doi:10.1016/j.energy.2016.06.071)
  7. Lorencin, I., Anđelić, N., Mrzljak, V., & Car, Z. (2019). Genetic Algorithm Approach to Design of Multi-Layer Perceptron for Combined Cycle Power Plant Electrical Power Output Estimation. Energies, 12(22), 4352. (doi:10.3390/en12224352)
  8. Behrendt, C., & Stoyanov, R. (2018). Operational Characteristic of Selected Marine Turbounits Powered by Steam from Auxiliary Oil-Fired Boilers. New Trends in Production Engineering, 1(1), 495-501. (doi:10.2478/ntpe-2018-0061)
  9. Mrzljak, V., Poljak, I., & Mrakovčić, T. (2017). Energy and exergy analysis of the turbo-generators and steam turbine for the main feed water pump drive on LNG carrier. Energy conversion and management, 140, 307-323. (doi:10.1016/j.enconman.2017.03.007)
  10. Tanuma, T. (Ed.). (2022). Advances in steam turbines for modern power plants. Woodhead Publishing.
  11. Mrzljak, V., Prpić-Oršić, J., & Poljak, I. (2018). Energy power losses and efficiency of low power steam turbine for the main feed water pump drive in the marine steam propulsion system. Pomorski zbornik, 54(1), 37-51. (doi:10.18048/2018.54.03)
  12. Mrzljak, V., Senčić, T., & Ţarković, B. (2018). Turbogenerator steam turbine variation in developed power: Analysis of exergy efficiency and exergy destruction change. Modelling and Simulation in Engineering, 2018. (doi:10.1155/2018/2945325)
  13. Kostyuk, A., & Frolov, V. (Eds.). (1988). Steam and gas turbines. Mir Pub.
  14. Uysal, C., Kurt, H., & Kwak, H. Y. (2017). Exergetic and thermoeconomic analyses of a coal-fired power plant. International Journal of Thermal Sciences, 117, 106-120. (doi:10.1016/j.ijthermalsci.2017.03.010)
  15. Mrzljak, V., & Poljak, I. (2019). Energy analysis of main propulsion steam turbine from conventional LNG carrier at three different loads. NAŠE MORE: znanstveni časopis za more i pomorstvo, 66(1), 10-18. (doi:10.17818/NM/2019/1.2)
  16. Djordjevic, M., Mančić, M., & Mitrović, D. (2015). ENERGY AND EXERGY ANALYSIS OF COAL FIRED POWER PLANT. Facta Universitatis, Series: Working and Living Environmental Protection, 163-175.
  17. Poljak, I., & Mrzljak, V. (2023). Thermodynamic Analysis and Comparison of Two Marine Steam Propulsion Turbines. NAŠE MORE: znanstveni časopis za more i pomorstvo, 70(2), 0-0. (doi:10.17818/NM/2023/2.2)
  18. Medica-Viola, V., Baressi Šegota, S., Mrzljak, V., & Štifanić, D. (2020). Comparison of conventional and heat balance based energy analyses of steam turbine. Pomorstvo, 34(1), 74-85. (doi:10.31217/p.34.1.9)
  19. Hafdhi, F., Khir, T., Yahyia, A. B., & Brahim, A. B. (2015). Energetic and exergetic analysis of a steam turbine power plant in an existing phosphoric acid factory. Energy Conversion and Management, 106, 1230-1241. (doi:10.1016/j.enconman.2015.10.044)
  20. Mrzljak, V., Jelić, M., Poljak, I., & Prpić-Oršić, J. (2023). Analysis and Comparison of Main Steam Turbines from Four Different Thermal Power Plants. Pomorstvo, 37(1), 58-74. (doi:10.31217/p.37.1.6)
  21. Mrzljak, V., Šegota, S. B., Kocijel, L., & Prpić-Oršić, J. (2020). Energy (isentropic) analysis of three-cylinder steam turbine with re-heating. Innovations, 8(1), 37-40.
  22. Lemmon, E. W., Huber, M. L., & McLinden, M. O. (2010). NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties (REFPROP), version 9.0, National Institute of Standards and Technology. R1234yf. fld file dated December, 22, 2010.
  23. Mrzljak, V., Poljak, I., Jelić, M., & Prpić-Oršić, J. (2023). Thermodynamic Analysis and Improvement Potential of Helium Closed Cycle Gas Turbine Power Plant at Four Loads. Energies, 16(15), 5589. (doi:10.3390/en16155589)
  24. Entezari, A., Bahari, M., Aslani, A., Ghahremani, S., & Pourfayaz, F. (2021). Systematic analysis and multi-objective optimization of integrated power generation cycle for a thermal power plant using Genetic algorithm. Energy Conversion and Management, 241, 114309. (doi:10.1016/j.enconman.2021.114309)
  25. Baressi Šegota, S., Mrzljak, V., Anđelić, N., Poljak, I., & Car, Z. (2023). Use of Synthetic Data in Maritime Applications for the Problem of Steam Turbine Exergy Analysis. Journal of Marine Science and Engineering, 11(8), 1595. (doi:10.3390/jmse11081595)
  26. Babatunde, D. E., Anozie, A., & Omoleye, J. (2020). Artificial neural network and its applications in the energy sector: An overview. International Journal of Energy Economics and Policy, 10(2), 250-264. (doi:10.32479/ijeep.8691)
  27. Baressi Šegota, S., Lorencin, I., Anđelić, N., Mrzljak, V., & Car, Z. (2020). Improvement of marine steam turbine conventional exergy analysis by neural network application. Journal of Marine Science and Engineering, 8(11), 884. (doi:10.3390/jmse8110884)

Article full text

Download PDF