FATIGUE ANALYSIS APPROACHES FOR VEHICLE COMPONENTS MADE OF RUBBER

  • 1 Department of Applied Mechanics – University of Széchenyi István, Győr, Hungary

Abstract

Generally, the most frequently used structural materials are metals which have high strength and stiffness. However, there are many cases, when other important properties come to the fore as well as high deformation by elastic behavior, high viscosity namely good damping effect. Vehicle components made of rubber usually exhibit large deformations. One of the most important properties of rubber is the ability to withstand large strains without permanent fractures. This feature makes it ideal for many engineering applications. On the other hand, the task becomes more complicated because of some features of rubber parts. The temperature of rubber increases significantly after deformations. Material properties of rubber change after these above mentioned temperature changes. Thus it is necessary to understand the mechanics underlying the failure process. This paper summarizes the applied equations and the basic physical laws which are responsible for the theoretical background of the strain and temperature changes and the analysis approaches that are available for predicting fatigue life in rubber, especially in vehicle components made of rubber.

Keywords

Article full text

Download PDF