Thermodynamical analysis of heat exchange and fuel consumption in marine re-heat steam generator

  • 1 Faculty of Engineering, University of Rijeka, Croatia
  • 2 University of Zadar, Maritime Department, Zadar, Croatia

Abstract

The paper presents analysis of heat exchange and fuel consumption in the entire Marine Steam Generator (MSG) with steam reheating and in all of its components. Analysis is performed by using operating parameters from the steam generator exploitation. The highest heat amount transferred from combustion gases is used in the evaporator (48.17 % of the cumulative heat amount transferred in MSG). Proportionally, evaporator uses the highest fuel mass flow of 0.5172 kg/s when compared to other MSG components. In the high-pressure pipeline heat losses amounts 82.64 kW. Cumulative heat transferred from combustion gases to water/steam in all MSG components amounts 42048.47 kW. Cumulative water/steam specific entropy and temperature increase in the entire MSG is 4.5677 kJ/kg·K and 454.18 K, while the fuel mass flow in the entire MSG is equal to 1.0736 kg/s.

Keywords

References

  1. Sakellaridis, N. F., Raptotasios, S. I., Antonopoulos, A. K., Mavropoulos, G. C., Hountalas, D. T.: Development and validation of a new turbocharger simulation methodology for marine two stroke diesel engine modelling and diagnostic applications, Energy 91, p. 952-966, 2015. (doi:10.1016/j.energy.2015.08.049)
  2. Mrzljak, V., Medica, V., Bukovac, O.: Volume agglomeration process in quasi-dimensional direct injection diesel engine numerical model, Energy 115, p. 658-667, 2016. (doi:10.1016/j.energy.2016.09.055)
  3. Mrzljak, V., Poljak, I., Mrakovčić, T.: Energy and exergy analysis of the turbo-generators and steam turbine for the main feed water pump drive on LNG carrier, Energy Conversion and Management 140, p. 307–323, 2017. (doi:10.1016/j.enconman.2017.03.007)
  4. Fernández, I. A., Gómez, M. R., Gómez, J. R., Insua, A. A. B.: Review of propulsion systems on LNG carriers, Renewable and Sustainable Energy Reviews 67, p. 1395– 1411, 2017. (doi:10.1016/j.rser.2016.09.095)
  5. Koroglu, T., Sogut, O. S.: Conventional and Advanced Exergy Analyses of a Marine Steam Power Plant, Energy 163, p. 392- 403, 2018. (doi:10.1016/j.energy.2018.08.119)
  6. Mrzljak, V., Senčić, T., Žarković, B.: Turbogenerator Steam Turbine Variation in Developed Power: Analysis of Exergy Efficiency and Exergy Destruction Change, Modelling and Simulation in Engineering 2018. (doi:10.1155/2018/2945325)
  7. Mrzljak, V., Prpić-Oršić, J., Senčić, T.: Change in Steam Generators Main and Auxiliary Energy Flow Streams During the Load Increase of LNG Carrier Steam Propulsion System, Scientific Journal of Maritime Research 32, p. 121-131, 2018. (doi:10.31217/p.32.1.15)
  8. Mrzljak, V., Poljak, I., Medica-Viola, V.: Dual fuel consumption and efficiency of marine steam generators for the propulsion of LNG carrier, Applied Thermal Engineering 119, p. 331–346, 2017. (doi:10.1016/j.applthermaleng.2017.03.078)
  9. Mrzljak, V., Poljak, I., Medica-Viola, V.: Energy and Exergy Efficiency Analysis of Sealing Steam Condenser in Propulsion System of LNG Carrier, International Journal of Maritime Science & Technology "Our Sea" 64 (1), p. 20-25, 2017. (doi:10.17818/NM/2017/1.4)
  10. Orović, J., Mrzljak, V., Poljak, I.: Efficiency and Losses Analysis of Steam Air Heater from Marine Steam Propulsion Plant, Energies 2018, 11 (11), 3019; (doi:10.3390/en11113019)
  11. Lemmon, E.W., Huber, M.L., McLinden, M.O.: NIST reference fluid thermodynamic and transport propertiesREFPROP, version 9.0, User’s guide, Colorado, 2010.

Article full text

Download PDF