The change in energy flow streams for main marine propulsion steam turbine at different loads

  • 1 Faculty of Engineering, University of Rijeka, Croatia


This paper present analysis of energy flow streams through the main steam turbine (the turbine is used for commercial LNG carrier propulsion) at three different loads. An increase in the propulsion plant (and proportionally increase in the main turbine) load resulted with an increase in energy flow streams and with an increase in the amount of water droplets inside steam at the main turbine outlet. Analyzed turbine has three steam extractions which opening as well as the amount of energy flow stream delivered through each extraction, significantly differs at various loads. The analysis shows that the highest energy flow stream consumers from the main turbine are deaerator and high pressure feed water heating system.



  1. Huang, H., Lv, D., Zhu, J., Zhu, Z., Chen, Y., Pan, Y., Pan, M.: Development of a new reduced diesel/natural gas mechanism for dual-fuel engine combustion and emission prediction, Fuel 236, p. 30-42, 2019. (doi:10.1016/j.fuel.2018.08.161)
  2. Senčić, T., Mrzljak, V., Blecich, P., Bonefačić, I.: 2D CFD Simulation of Water Injection Strategies in a Large Marine Engine, Journal of Marine Science and Engineering 7 (9), 296, 2019, (doi:10.3390/jmse7090296)
  3. Baldi, F., Ahlgren, F., Van Nguyen, T., Thern, M., Andersson, K.: Energy and Exergy Analysis of a Cruise Ship, Energies 11, 2508, 2018. (doi:10.3390/en11102508)
  4. Mrzljak, V., Mrakovčić, T.: Comparison of COGES and diesel-electric ship propulsion systems, Journal of Maritime & Transportation Sciences-Special edition No. 1, p. 131- 148, 2016. (doi:10.18048/2016-00.131)
  5. Fernández, I. A., Gómez, M. R., Gómez, J. R., Insua, A. A. B.: Review of propulsion systems on LNG carriers, Renewable and Sustainable Energy Reviews 67, p. 1395– 1411, 2017. (doi:10.1016/j.rser.2016.09.095)
  6. Chang, D., Rhee, T., Nam, K., Chang, K., Lee, D., Jeong, S.: A study on availability and safety of new propulsion systems for LNG carriers, Reliability Engineering and System Safety 93, p. 1877– 1885, 2008. (doi:10.1016/j.ress.2008.03.013)
  7. Attah, E. E., Bucknall, R.: An analysis of the energy efficiency of LNG ships powering options using the EEDI, Ocean Engineering 110, part B, p. 62-74, 2015. (doi:10.1016/j.oceaneng.2015.09.040)
  8. Ammar, N. R.: Environmental and cost-effectiveness comparison of dual fuel propulsion options for emissions reduction onboard LNG carriers, Shipbuilding 70 (3), p. 61-77, 2019. (doi:10.21278/brod70304)
  9. Raptotasios, S. I., Sakellaridis, N. F., Papagiannakis, R. G. Hountalas, D. T.: Application of a multi-zone combustion model to investigate the NOx reduction potential of two-stroke marine diesel engines using EGR, Applied Energy 157, p. 814-823, 2015. (doi:10.1016/j.apenergy.2014.12.041)
  10. Mrzljak, V., Poljak, I., Mrakovčić, T.: Energy and exergy analysis of the turbo-generators and steam turbine for the main feed water pump drive on LNG carrier, Energy Conversion and Management 140, p. 307–323, 2017. (doi:10.1016/j.enconman.2017.03.007)
  11. Behrendt, C., Stoyanov, R.: Operational characteristic of selected marine turbounits powered by steam from auxiliary oil-fired boilers, New Trends in Production Engineering 1 (1), p. 495-501, 2018. (doi:10.2478/ntpe-2018-0061)
  12. Mrzljak, V., Prpić-Oršić, J., Poljak, I.: Energy Power Losses and Efficiency of Low Power Steam Turbine for the Main Feed Water Pump Drive in the Marine Steam Propulsion System, Journal of Maritime & Transportation Sciences 54 (1), p. 37-51, 2018. (doi:10.18048/2018.54.03)
  13. Koroglu, T., Sogut, O. S.: Conventional and Advanced Exergy Analyses of a Marine Steam Power Plant, Energy 163, p. 392-403, 2018. (doi:10.1016/
  14. Lorencin, I., Anđelić, N., Mrzljak, V., Car, Z.: Exergy analysis of marine steam turbine labyrinth (gland) seals, Scientific Journal of Maritime Research 33 (1), p. 76-83, 2019. (doi:10.31217/p.33.1.8)
  15. Kanoğlu, M., Çengel, Y.A., Dincer, I.: Efficiency Evaluation of Energy Systems, Springer Briefs in Energy, Springer, 2012. (doi:10.1007/978-1-4614-2242-6)
  16. Yoru, Y., Karakoc, T. H., Hepbasli, A.: Dynamic energy and exergy analyses of an industrial cogeneration system, International journal of energy research 34, p. 345–356, 2010. (doi:10.1002/er.1561)
  17. Ahmadi, G. R., Toghraie, D.: Energy and exergy analysis of Montazeri Steam Power Plant in Iran, Renewable and Sustainable Energy Reviews 56, p. 454–463, 2016. (doi:10.1016/j.rser.2015.11.074)
  18. Cengel Y., Boles M.: Thermodynamics an engineering approach, Eighth edition, McGraw-Hill Education, 2015.
  19. Mrzljak, V., Poljak, I., Medica-Viola, V.: Dual fuel consumption and efficiency of marine steam generators for the propulsion of LNG carrier, Applied Thermal Engineering, 119, p. 331–346, 2017. (doi:10.1016/j.applthermaleng.2017.03.078)
  20. Mrzljak, V., Poljak, I.: Energy Analysis of Main Propulsion Steam Turbine from Conventional LNG Carrier at Three Different Loads, International Journal of Maritime Science & Technology “Our Sea” 66 (1), p. 10-18, 2019. (doi:10.17818/NM/2019/1.2)
  21. Lemmon, E.W., Huber, M.L., McLinden, M.O.: NIST reference fluid thermodynamic and transport properties - REFPROP, version 9.0, User’s guide, Colorado, 2010.
  22. Mrzljak, V., Blecich, P., Anđelić, N., Lorencin, I.: Energy and Exergy Analyses of Forced Draft Fan for Marine Steam Propulsion System during Load Change, Journal of Marine Science and Engineering 7, 381, 2019. (doi:10.3390/jmse7110381)
  23. Blažević, S., Mrzljak, V., Anđelić, N., Car, Z.: Comparison of energy flow stream and isentropic method for steam turbine energy analysis, Acta Polytechnica 59 (2), p. 109– 125, 2019. (doi:10.14311/AP.2019.59.0109)
  24. Mrzljak, V., Prpić-Oršić, J., Senčić, T.: Change in Steam Generators Main and Auxiliary Energy Flow Streams During the Load Increase of LNG Carrier Steam Propulsion System, Scientific Journal of Maritime Research 32 (1), p. 121-131, 2018. (doi:10.31217/p.32.1.15)
  25. Lorencin, I., Anđelić, N., Mrzljak, V., Car, Z.: Multilayer Perceptron approach to Condition-Based Maintenance of Marine CODLAG Propulsion System Components, Scientific Journal of Maritime Research 33 (2), p. 181-190, 2019. (doi:10.31217/p.33.2.8)
  26. Lorencin, I., Anđelić, N., Mrzljak, V., Car, Z.: Genetic Algorithm Approach to Design of Multi-Layer Perceptron for Combined Cycle Power Plant Electrical Power Output Estimation, Energies 12 (22), 4352, 2019. (doi:10.3390/en12224352)

Article full text

Download PDF