Laser Induced Breakdown Spectroscopy technique for detection of trace elements in Particulate Matter emitted from in-use Diesel engine passenger vehicles

  • 1 Institute of Biomedical Mechatronics, Johannes Kepler University Linz, Austria
  • 2 Institute of Analytical Chemistry, Johannes Kepler University Linz, Austria
  • 3 Univers ity of Bordeaux, Campus Talence, 351 Cours de la Libération, Talence, France


The particulate matter (PM) and soot emissions generated from Diesel combustion engine driven vehicles are forming significant sources of toxic and metallic nanoparticles into the air and surrounding atmosphere in heavily traffic areas or locations. Previously, we reported that particulate matter from in-use Diesel engine passenger vehicles are chemically composed of major and minor chemical elements with different concentration. Here, we apply laser induced breakdown spectroscopy (LIBS) technique for qualitative comparative study of trace chemical elements adsorbed in different PM and soot matrices. The adsorption of these chemical elements in generated PM exhaust emissions occurs due to the complex combustion processes. The main responsible sources are: injected fuel type (Diese l, Biodiesel), fuel quality, fuel additives, engine lubricants, engine combustion process, incomplete catalytic reaction, inefficient PM filterin g devices, engine failure or polluted intake air. All these factors as well as current engine state alter final chemical composition of particulate matter generated from in-use Diesel engine passenger vehicles -exhaust emissions.


  1. Ntziachristos, L.; Papadimitriou, G.; Ligterink, N.; Hausberger, S. Implications of Diesel emissions control failures to emission factors and road transport NOx evolution. Atmos. Environ. 2016, 141, 542–551,
  2. Zacharof, N.; Tietge, U.; Franco, V.; Mock, P.: Type approval and real-world CO2 and NOx emissions from EU light commercial vehicles. Energy Policy 2016, 97, 540–548,
  3. Calderón-Garc idueñas, L.; Mora-Tiscareño, A.; Ontiveros, E.; Gómez-Garza, G.; Barragán-Mejía, G.; Broadway, J.; Chapman, S.; Valencia-Salazar, G.; Jewells, V.; Maronpot, R.R.; et al. Air pollution, cognitive deficits and brain abnormalities : A pilot study with children and dogs. Brain Cogn. 2008, 68, 117–127,
  4. Block, M.L.; Calderon-Garciduenas, L. Air pollution: Mechanisms of neuroinflammation and CNS disease Trends Neurosci. 2009, 32, 506–516,
  5. Park, Sun, Kyoung; Assessing the Impact of Air Pollution on Mortality Rate from Cardiovascular Disease in Seoul, Korea. Environmental engineering research 2018, 23, 430-441.
  6. Torén, K.; Bergdahl, I.A.; Nilsson, T.; Järvholm, B. Occupational Exposure to Particulate Air Pollution and Mortality due to Ischaemic Heart Disease and Cerebrovascular Disease. Occupational and environmental medicine 2007, 64, 515-519.
  7. Commission Regulation (EU) No 459/2012. Available online: (accessed on 3. January 2021).
  8. Österreichische Patentanmeldung AT 517982 A1 2017-06-15, "Vorrichtung zur Abgasanalyse einer Verbrennungskraftmaschine". Available online: d54b08a-9de6-4fef-bb07-b88a14781f1d
  9. Viskup, R.; Wolf, C.; Baumgartner, W.; Qualitative and quantitative characterisation of major elements in particulate matter from in-use diesel engine passenger vehicles by LIBS. Energies. 2020; 13 : 368.
  10. Viskup, R.; Wolf, C.; Baumgartner, W.; Quantification of Minor Chemical Elements in Particulate Matter Collected from In- Use Diesel Engine Passenger Vehicles by Laser-Induced Breakdown Spectroscopy. Energies. 2020; 13 : 6113.
  11. Noll, R.; Laser-Induced Breakdown Spectroscopy, Fundamentals and Applications; Springer-Verlag Berlin Heidelberg: Berlin, Germany, 2012. 3-642-20668-9_2
  12. Miziolek, A. W.; Palleschi, V.; Schechter, I.; Laser-Induced Breakdown Spectroscopy (LIBS):Fundamentals and Application; Cambridge University Press: New York, USA, 2006.
  13. Cremers, D. A.; Radziemski, L. J.; Handbook of Laser-Induced Breakdown Spectroscopy; John Wiley & Sons Inc.: New Delhi, India, 2013.
  14. Hahn, D. W.; Omenetto, N.; Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields. Appl. Spectrosc. 2012, 66, 347.
  15. Noll, R.; Fricke-Begemann, C.; Brunk, M.; Connemann, S.; Meinhardt, C.; Scharun, M.; Sturm, V.; Makowe, J.; Gehlen, C.; Laser-induced breakdown spectroscopy expands into industrial applications. Spectrochim. Acta. Part B At. Spectrosc. 2014, 93, 41.
  16. Aragón, C.; Aguilera, J.; Influence of the optical depth on spectral line emission from laser-induced plasmas . Spectrochim. Acta. Part B At. Spectrosc. 2008, 63, 893.
  17. Viskup, R.; Praher, B.; Linsmeyer, T.; Scherndl, H.; Pedarnig, J. D.; Heitz, J.; Influence of pulse-to-pulse delay for 532 nm double-pulse laser-induced breakdown spectroscopy of technical polymers. Spectrochim. Acta. Part B At. Spectrosc. 2010, 65, 935.
  18. Samek, O. ; Beddows, D. C. S.; Kaiser, J.; Kukhlevsky, S. V.; Liska, M.; Telle, H. H.; Young, J.; Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples. Opt. Eng. 2000, 39, 2248.
  19. Effenberger, A. J.; Scott, J. R.; Effect of Atmospheric Conditions on LIBS Spectra. Sensors (Basel) 2010, 10, 4907.
  20. Stehrer, T.; Praher, B.; Viskup, R.; Jasik, J.; Wolfmeir, H.; Arenholz, E.; Heitz, J.; Pedarnig, J. D.; Laser-induced breakdown spectroscopy of iron oxide powder. J. Anal. At. Spectrom. 2009, 24, 973.
  21. Viskup, R.; Praher, B.; Stehrer, T.; Jasik, J.; Wolfmeir, H.; Arenholz, E.; Pedarnig, J. D.; Heitz, J.; Plasma plume photography and spectroscopy of Fe—Oxide materials. Appl. Surf. Sci. 2008, 255, 5215.

Article full text

Download PDF