The occurrence of road accidents due to a pavement surface with inadequate roughness is an alarming issue. This problem involves not only the design, construction and maintenance of road pavements, but also the properties of the materials used in the asphalt mixes, traffic volume and vehicle speed, as well as tire characteristics, human factors, environmental conditions and many other contributing elements. As a result, there is a growing awareness of these problems and adequate measures have to be taken by road administrations in order to improve traffic safety. For the design, construction and maintenance of a modern road network, along with strength and sustainability, skid resistance has become an integral part of a safe and efficient road system. With the increase in traffic speed and volume, the road pavements built today must have initial and continuous qualities of high skid resistance. It is a well-known fact that the pavements skid resistance is reduced primarily by mechanical wear and polishing due to traffic action; however, to what extent the friction characteristics are diminished and the other causes and effects of this reduction are problems that road engineers have to face. Although the automotive and tire industries have contributed greatly to the research and development of skid-resistant road pavements, it is quite obvious that most of the improvements will go to pavements. In the following, the paper will focus on establishing the roughness criteria that can be applied from the early stages of the construction of a road infrastructure, by selecting those materials and techniques that lead to a high level of roughness and thus traffic safety. Also, the paper presents the results of recent experimental studies undertaken to determine the road roughness, using the microtexture as well as macrotexture criteria, conducted in Romania on the national roads DN 2 km 212 + 000 and DN 15 km 290 + 870.