VEHICLE ENGINES. APPLICATION OF FUELS TYPES. EFFICIENCY
Energy and exergy analyses of gas turbine set and its components
- 1 Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia
- 2 Department of maritime sciences, University of Zadar, Mihovila Pavlinovića 1, 23000 Zadar, Croatia
Abstract
This paper presents energy and exergy analysis results of whole gas turbine set and all its components. From the energy viewpoint, combustion chamber has the lowest energy loss (21.31 MW) and the highest energy efficiency (97.20%) of all gas turbine set components. Exergy analysis shows totally opposite trend in comparison to the energy analysis. From the exergy viewpoint, turbocompressor and turbine have low exergy destruction (both around 12 MW) and very high exergy efficiencies (92.43% for turbocompressor and 96.12% for turbine) at the base ambient state. Simultaneously, at the base ambient state combustion chamber has an exergy destruction of 159 MW and low exergy efficiency of 73.29% only. The combustion chamber is the most sensitive to the ambient temperature change of all components from the gas turbine set – the ambient temperature change of 10 °C will result with combustion chamber exergy efficiency change of approximately 0.67%. Whole gas turbine set (plant) has an energy efficiency of 34.40% and exergy efficiency of 33.08%.
Keywords
References
- Qu, Z., Xu, J., Wang, Z., Chi, R., & Liu, H. (2021). Prediction of electricity generation from a combined cycle power plant based on a stacking ensemble and its hyperparameter optimization with a grid-search method. Energy, 227, 120309. (doi:10.1016/j.energy.2021.120309)
- Anđelić, N., Lorencin, I., Mrzljak, V., & Car, Z. (2024). On the application of symbolic regression in the energy sector: Estimation of combined cycle power plant electrical power output using genetic programming algorithm. Engineering applications of artificial intelligence, 133, 108213. (doi:10.1016/j.engappai.2024.108213)
- Martelli, M., & Figari, M. (2017). Real-Time model-based design for CODLAG propulsion control strategies. Ocean Engineering, 141, 265-276. (doi:10.1016/j.oceaneng.2017.06.029)
- Anđelić, N., Baressi Šegota, S., Lorencin, I., Poljak, I., Mrzljak, V., & Car, Z. (2021). Use of Genetic Programming for the Estimation of CODLAG Propulsion System Parameters. Journal of Marine Science and Engineering, 9(6), 612. (doi:10.3390/jmse9060612)
- Richter, H. (2011). Advanced control of turbofan engines. Springer Science & Business Media.
- Baek, S., Lee, H., & Lee, K. (2021). Fuel efficiency and exhaust characteristics of turbocharged diesel engine equipped with an electric supercharger. Energy, 214, 119049. (doi:10.1016/j.energy.2020.119049)
- Mrzljak, V., Jelić, M., Poljak, I., & Medica-Viola, V. (2023). Exergy analysis of supercritical CO2 system for marine diesel engine waste heat recovery application. Pomorski zbornik, 63, 39- 62.
- Kostyuk, A., & Frolov, V. (1988). Steam and gas turbines. Mir Publishers.
- Liu, Z., & Karimi, I. A. (2020). Gas turbine performance prediction via machine learning. Energy, 192, 116627. (doi:10.1016/j.energy.2019.116627)
- Mrzljak, V., Poljak, I., Jelić, M., & Prpić-Oršić, J. (2023). Thermodynamic Analysis and Improvement Potential of Helium Closed Cycle Gas Turbine Power Plant at Four Loads. Energies, 16(15), 5589. (doi:10.3390/en16155589)
- Giampaolo, T. (2020). Gas turbine handbook: principles and practice. River Publishers.
- Boyce, M. P. (2011). Gas turbine engineering handbook. Elsevier.
- Cavalcanti, E. J., Ribeiro, T. J., & Carvalho, M. (2021). Exergoenvironmental analysis of a combined cycle power plant fueled by natural gas from an offshore platform. Sustainable Energy Technologies and Assessments, 46, 101245. (doi:10.1016/j.seta.2021.101245)
- Mrzljak, V., Poljak, I., Prpić-Oršić, J., & Jelić, M. (2020). Exergy analysis of marine waste heat recovery CO2 closed-cycle gas turbine system. Pomorstvo, 34(2), 309-322. (doi:10.31217/p.34.2.12)
- Mrzljak, V., Poljak, I., Orović, J., & Prpić-Oršić, J. (2019). Numerical analysis of real open cycle gas turbine. In IV International Scientific Conference: High Technologies. Business. Society (pp. 51-54).
- Poljak, I., Mrzljak, V., Senčić, T., & Pastorčić, D. (2024). Isentropic and exergy analyses of marine steam turbine segments at several loads. Scientific Journal of Maritime Research-Pomorstvo, 38(1). (doi:10.31217/p.38.1.8)
- Poljak, I., & Mrzljak, V. (2023). Thermodynamic Analysis and Comparison of Two Marine Steam Propulsion Turbines. NAŠE MORE: znanstveni časopis za more i pomorstvo, 70(2), 0-0. (doi:10.17818/NM/2023/2.2)
- Kopac, M., & Hilalci, A. (2007). Effect of ambient temperature on the efficiency of the regenerative and reheat Çatalağzı power plant in Turkey. Applied Thermal Engineering, 27(8-9), 1377-1385. (doi:10.1016/j.applthermaleng.2006.10.029)
- Khaleel, O. J., Ismail, F. B., Ibrahim, T. K., & bin Abu Hassan, S. H. (2022). Energy and exergy analysis of the steam power plants: A comprehensive review on the Classification, Development, Improvements, and configurations. Ain Shams Engineering Journal, 13(3), 101640. (doi:10.1016/j.asej.2021.11.009)
- Szargut, J. (2005). Exergy method: technical and ecological applications (Vol. 18). WIT press.
- Lemmon, E. W., Huber, M. L., & McLinden, M. O. (2010). NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties (REFPROP), version 9.0, National Institute of Standards and Technology. R1234yf. fld file dated December, 22, 2010.
- Mrzljak, V., Ţarković, B., & Poljak, I. (2017). Energy and exergy analysis of sea water pump for the main condenser cooling in the LNG carrier steam propulsion system. Mathematical Modeling, 1(3), 144-147.
- Ibrahim, T. K., Basrawi, F., Awad, O. I., Abdullah, A. N., Najafi, G., Mamat, R., & Hagos, F. Y. (2017). Thermal performance of gas turbine power plant based on exergy analysis. Applied thermal engineering, 115, 977-985. (doi:10.1016/j.applthermaleng.2017.01.032)
- Baressi Šegota, S., Mrzljak, V., Anđelić, N., Poljak, I., & Car, Z. (2023). Use of Synthetic Data in Maritime Applications for the Problem of Steam Turbine Exergy Analysis. Journal of marine science and engineering, 11(8), 1595. (doi:10.3390/jmse11081595)
- Ebrahimgol, H., Aghaie, M., Zolfaghari, A., & Naserbegi, A. (2020). A novel approach in exergy optimization of a WWER1000 nuclear power plant using whale optimization algorithm. Annals of Nuclear Energy, 145, 107540. (doi:10.1016/j.anucene.2020.107540)
- Anđelić, N., Šegota, S. B., & Mrzljak, V. (2025). A comprehensive study on symbolic expressions for fault detection-classification in photovoltaic farms. Applied energy, 383, 125370. (doi:10.1016/j.apenergy.2025.125370)