The possibility of optimizing the properties of materials by using carbon nanostructures
- 1 G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine
Abstract
Carbon nanomaterials occupy one of the leading places in many areas of technology aimed at creating new materials and solving a number of problems for various industrial needs, including materials needed for alternative energy. The development of humanity is accompanied by a constant increase in resource availability, which, despite the discovery of new deposits of fossil resources, can lead to a shortage of energy resources. Therefore, in the modern world, it is necessary to develop technologies that will promote the use and implementation of non-traditional alternative energy sources.
References
- Elementi fiziki poverhni, nanostruktur i tehnologij [Pogosov V.V., Kunickij Yu.A., Babich A.V., Korotun A.V.]. – Zaporizh.: ZNTU, 2010. – 365 p.
- Mikhailova G.Yu., Nishchenko M.M., Pimenov V.N., Starostin E.E., Tovtin V.I. Thermoelectric and Elastic Properties of Carbon Nanotubes Irradiated with High-Energy Electrons Inorganic Mater.: Appl. Res.V. 10.No. 5. 2019.P. 1052. https://doi.org/10.1134/S2075113319050186
- Zhen Yao, Henk W. Ch. Postma, Leon Balents, Cees Dekker Carbon nanotube intramolecular junctions // Nature. – 1999. – V. 402. – P. 273-276.
- Seamus A. Curran, Jamal Talla, Sampath Dias, Donghui Zhang, David Carroll Electrical transport measurements of highly conductive carbon nanotube/poly (bisphenol A carbonate) composite // Journal of applied physics. – 2009. – V. 105. – P. 073711-073718.
- K. Ahmad, W. Pan, S.L. Shi Electrical conductivity and electrical properties of multiwall carbon nanotubes and alumina composities // Applied Physics Letters. – 2006. – V. 89. – P. 133122-133128.
- J.K.W. Sandler, J.E. Kirk, I.A. Kinloch, M.S.P. Shaffer, A.H. Windle Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites // Polymer. – 2003. – V. 44. – P. 5893-5899.
- M.B. Bryning, M.F. Islam, J.M. Kikkawa, A.G. Yodh Very low conductivity threshold in bulk isotropic single-walled carbon nanotube-epoxy composites // Advanced Materials. – 2005. – V. 17. – P. 1186-1191.
- E. Kymakis, I. Alexandou, G.A. Amaratunga Single-walled carbon nanotube-polymer composites: electrical, optical and structural investigation // Synthetic Metals. – 2002. – V. 127. – P. 59-62.
- M.B. Bryning, D.E. Milkie, M.F. Islam, J.M. Kikkawa, A.G. Yodh Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites // Applied physics letters. – 2005. – V. 87. – P. 161909-161909-3.
- W.A. DeHeer, W.S. Bacsa, A. Chatelain, T. Gerfin, R. Humphreybaker, L. Forro, D. Ugarte Aligned Carbon Nanotu be Films: Production and Optical and Electronic Properties // Science. – 1995. – V. 268. – P. 845-847.
- J.E. Fischer, H. Dai, A. Thess, R. Lee, N.M. Hanjani, D.L. Dehaas, R.E. Smalley Metallic resistivity in crystalline ropes of single-wall carbon nanotubes // Physical Review B. – 1997. – V. 55. – P. R4921-R4924.
- Balberg I. A comprehensive picture of the electrical phenomena in carbon black–polymer composites // Carbon. – 2002. – V. 40. – P. 139-143.
- M. Foygel, R.D. Morris, D. Anez, S. French, V.L. Sobolev Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity // Physical Review B. – 2005. – V. 71. – P. 104201-8.
- Balberg I. Tunneling and Nonuniversal Conductivity in Composite Materials // Physical review letters. – 1987. – V. 59, №12. – P. 1305-1308.
- Chunyu Li Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube–based composites / Chunyu Li, Erik T. Thostenson, Tsu-Wei Chou // Applied physics letters. – 2007. – V. 91. – P. 22314-3.
- Simmons J.G. Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film // Journal of Applied Physics. – 1963. – V. 34, №6. – P. 1793-1803.
- Qianqian Li, Christian A. Rottmair, Robert F. Singer CNT reinforced light metal composites produced by melt stirring and by hight pressure die casting // Composites Science and Technology. – V. 70. – 2010. – P. 2242- 2247.
- E.V. Anufrieva, M.G.Krakovyak i dr. Vzaimodejstvie polimerov s fullerenom C60// Fizika tverdogo tela.− 2002.− T. 44, V. 3. − P.443-444.
- A.V. Eleckij, B.M. Smirnov Fullereny // Uspehi fizicheskih nauk. – 1993. − T. 163, № 2. − p. 33-60.
- J. Keith Nelson Dielectric Polymer Nanocomposites. – Springer Science & Business Media. – 2009. – 368 p.
- Polipropilen / Pod red. V. Pilipskogo, I. Yarceva. – M.: Himiya, 1967. – 16 p.
- S.R. Bakshi, D. Lahiri, A. Agarwal Carbon nanotubes reinforced metal matrix composites // CRC Press, Boca Raton. – 2011. – 295 p.
- A. Bachmaier, R. Pippan Generation of metallic nanocomposites by severe plastic deformation // International Materials Reviews. – 2013. – V. 53, №1. – P. 41-62.
- Mikhail Nishchenko, Galina Mihajlova, G.P. Prikhodko, Tatiana Volkova, Mykola Dashevskyi, Olesya Nakonechna Peculiarities of Electrical Conductivity of Metal/Carbon Nanotubes Array // Metallofiz. Noveishie Tekhnol., 40,No. 6: 749–758 (2018),DOI: 10.15407/mfint.40.06.0749.
- H.Yu.Mykhailova, Bogdan Kovalchuk, Yuliya Bozbey, Volodymyr Dekhtyarenko Electrical conductivity of nanocomposites metal-carbon nanotubes // MRS Communications, 13, 320-323 (2023) https://doi.org/10.1557/s43579-023-00345-2
- I. M. Sydorchenko, N. A. Shevchenko, Ye. A. Tsapko, I. Ye. Galstan, H. Yu. Mykhaylova, and E. G. Len Emission Properties of Cathode Materials Based on LaNi5–CNT Composites // Metallofiz. Noveishie Tekhnol., 43, No. 12: 1707—1718 (2021) (in Ukrainian) https://doi.org/10.15407/mfint.43.12.1707
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov Two-dimensional gas of massless Dirac fermions in grapheme // Nature letters. – 2005. – V. 438, №10. – P. 197-200.