MATERIALS
Development of non-equilibrium thermodynamics models of solid-phase transformations in iron-carbon alloys
- 1 Uppsala University, Angstrom Laboratory, Uppsala, Sweden; Iron and Steel Institute of Z.I. Nekrasov, National Academy of Sciences of Ukraine
Abstract
The development of metal physics and physical materials science in the coming decades is one of the main driving forces of the new scientific and technological revolution, which will cause significant changes in many sectors of industry and energy, construction and agriculture, military equipment and everyday life. In the work using the principles of nonequilibrium thermodynamics develop new models of solid-phase transformations in iron-carbon alloys: annealing, tempering, γ→α – transformation, graphite formation, carbides transformation. Developed models of solid-phase transformations applied to the management of the structure formation of iron-carbon alloys and optimization of their thermal treatment and identifying the conditions of formation of dispersed (nano) particles of carbides in some of the investigated alloys and possibilities of their transformation.
Keywords
References
- S. Bokstein Thermodynamics and kinetics in materials science: a short course. (Oxford University Press, 2005).
- O. Penrose and J.W. Cahn. Discrete and continuous Dynamical System, 37, 963 (2017).
- S.V. Bobyr. Using the principles of nonequilibrium thermodynamics for the analysis of phase transformations in iron-carbon alloys. Non-Equilibirum Particle Dynamics (Intechopen, London, May 2019). DOI: 10.5772 /Intechopen.83657
- D. Arovas. Lecture Notes on Thermodynamics and Statistical Mechanics (A Work in Progress) (Department of Physics University of California, San Diego, October 2015).
- M. Hillert. Scripta metallurgica Materiala, 17 (1), 237 (1983).
- M.A. Krishtal, A.A. Zhukov, R.L. Snezhnoy, E.G. Titensky. Thermodynamics, physical kinetics of structure formation and properties of cast iron and steel. Issue 4. (Moscow: Metallurgy: 1971).
- A.A. Zhukov, R.L. Snezhnoy, Diffusion processes in metals (Kyiv: Naukova Dumka: 1966).
- S. I. Gubenko MtOM, 2(93), 26(2021). DOI: 10.30838/J.PMHTM.2413.270421.26.738.
- V.A. Lobodiuk Uspekhi fiziki metallov, 17, 89 (2016).
- V. N. Lecoq, H. Zapolsky, and P. Galenko, Eur. Phys. J. Spec. Top., 177, 165 (2009).
- D. Jou, J. Cases-Vezquez, G. Lebon. Extended Irreversible Thermodynamics. T. XVIII (Springer, London, 2010).
- T. Barkar, L. Hoglund, J. Odqvist and J. Agren. Computational Material Science, 143, 446 (2018).
- D. Mukherjee, H. Larsson, and J. Odqvist. Computational Material Science, 184, 1 (2020).
- A. Finel, Y. L. Bouar, B. Dabas, B. Appolaire, Y. Yamada, and T. Mohri. Phys. Rev. Let., 121 (2), 025501 (2018).
- Ch.-Y. Chou, N.H. Petterson, A. Durga, F. Zhang, Ch. Oikinomou, A. Borgenstam, J. Odqvist, G. Lindwall // Ch.-Y. Chou. Doctoral Thesis in Material Science and Engineering (KTH Royal Institute of Technology, Stockholm, 2023).
- R. Kozubski, G. E. Murch, I. V. Belova. Diffusion Foundations, 29, 95 (2021).
- S.V. Bobyr. Physics and Chemistry of Solid State, 20 (2), 196 (2019).
- S.V. Bobyr. Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 66 (1), 28 (2021).
- S. Bobyr, J. Odqvist, Physics and Chemistry of Solid State, 25 (2), 406(2024).
- S.V. Bobyr, D. V. Loshkarev. American Journal of Me-chanical and Materials Engineering, 5(2), 23(2021).
- S. V. Bobyr, Metallofiz. Noveishie Tekhnol., 40(11), 1437 (2018), DOI: 10.15407/mfint.40.11.1437.
- S. V. Bobyr, Metallofiz. Noveishie Tekhnol., 42(11) 1573(2020), DOI: 10.15407/mfint.42.11.1573.
- S.V. Bobyr, E.V. Parusov, G.V. Levchenko, A.Yu. Borisenko, and I.M. Chuiko, Progress in Physics of Metals, 23 (3), 379(2022).
- S.V. Bobyr, P.V. Krot. Material Science & Engineering International Journal, 6 (1), 14 (2022).
- G. I. Silman. MtOM, 1, 26(2002).
- G. I. Silman. Materials Science and Production: Interu-niversity. Sat. scientific tr. v. 3 (Bryansk: Publishing House BGITA, 2003).