Formulation of axisymmetric boundary value problems of the linear theory of elasticity for canonical bodies in harmonic potentials

  • 1 Lviv Polytechnic National University, Lviv, Ukraine


The paper is based on the representation of the fundamental solution of the linear elasticity theory of the mechanics of a deformable solid in the J. Dougall’s form through spatial harmonic functions. The axisymmetric problem of the elasticity theory in a cylindrical coordinate system for bodies bounded by a canonical surface is formulated. As a case, the boundary value problem of pure torsion is formulated and the elastic characteristics and structure of the corresponding external loads on the side surface of a given isotropic elastic body in the above-mentioned harmonic potentials are presented. This approach makes it possible to obtain and extend the set of exact analytical solutions of boundary value problems of the spatial elasticity theory and is the theoretical basis for calculating the strength parameters of mechanical systems.



  1. W.Kelvin, P.g.Tait. Treatise on natural philosophy. – Cambridge: Univ. press, (1879) 328 p.
  2. M.J.Boussinesq. Application des potentials a l’etude de lequilibre et du movement des solides elastiques. – Paris: Gauthiers-Vilars, (1885) 280 p.
  3. B.Galerkin. К obshemu resheniyu zadach teoriyi uprugosti v trjoch izmereniyach s pomochju funkciy napryazeniy i peremeshcheniy. Doklady AN SSSR,ser А.(10) (1931) 281-286. [InRussian].
  4. P.F. Papkovich Teoriya uprugosty, Oborongiz, Moscow, 1939, 639 p. [In Russian] .
  5. H. Neuber. Concentratsiya napriazeniy, Gostechizdat, Moscow, 1947, 204 p. [In Russian].
  6. Revenko V.P. Solving the three-dimensional equations of the linear theory of elasticity. Int. Appl. Mech. 45 (7), (2009) 730- 741.
  7. Revenko V.P. Pobudova zahalnoho rozviazku tryvymirnykh rivnian Liame teorii pruzhnosti v kryvoliniinii systemi koordynat. Matematychnyi visnyk Naukovoho tovarystva im.Shevchenka. 2., (2005) 185-198 [InUkrainian].
  8. Revenko V.P. Rozviazannia tryvymirnoi kraiovoi zadachi teorii pruzhnosti dlia tila obertannia. Prykladni problemy mekhaniky i matematyky. 12, (2014) 130–136 [InUkrainian].
  9. A.I. Lurie Teoriya uprugosty, Nauka, Moscow, 1970, 940 p. [In Russian].
  10. S.P.Timoshenko, J.N. Goodier Teoriya uprugosty, Nauka, Moscow, 1975, 575 p. [In Russian].
  11. J.Dougall. An analytical theory of the equilibrium of an isotropic elastic plate. Trans. Roy. Soc. Edinburgh. 41(8),(1904) 129-228.
  12. Yu.Tokovyi. Funktcii napruzen tryvymirnoi zadachi teorii pruznosti dlya sutsilnogo skinchennogo cylindra. Visnyk KNU, 27 (2012) 50-54. [InUkrainian] (V. Meleshko).

Article full text

Download PDF