MATHEMATICAL MODELLING OF TECHNOLOGICAL PROCESSES AND SYSTEMS

Behaviour of SPP waves frequency spectrum for dielectric/metal/dielectric structures

  • 1 Lviv Polytechnic National University Lviv

Abstract

In this paper, the authors studied the influence of different phenomena and materials properties on the frequency spectrum of the surface plasmon-polariton (SPP) waves behaviour in “dielectric/metal/dielectric” structures. Among them are spatial dispersion, quantization of energy levels, electron-electron interaction (Coulomb correlations) thickness of a metal layer. Established that for atomically thin metal films mentioned effects affect the frequency spectrum significantly. Mentioned that taking into account quantum-sized effects reveals a specific oscillatory picture of the spectrum that repeats one obtained for chemical potential. Proposed model yields results that have a quite good agreement with an experimental data.

Keywords

References

  1. S.A. Maier, Springer – Verlag, Plasmonics: Fundamentals and Application (2007)
  2. M. Ono, T. Hideaki et al., NTT Technical Review, 16, 7, 14-19 (2018).
  3. J.R. Mejía-Salazar, N.O. Oliveira, American Chemical - Chemical Reviews, Society, Plasmonic Biosensing, 118 (2018)
  4. J. Liu, M. Jalali et al., Analyst - The Royal Society of Chemistry, 145 2, 364-384 (2020)
  5. H. Šípová, S. Zhang, Anal. Chem., 82, 24, 10110–10115 (2010)
  6. J. Nico, J. Marcel, E. Fischer, Surface Plasmon Resonance, 627, ISBN: 978-1-60761-669-6 (2010)
  7. C. Chen, D. Mohr et al., American Chemical Society - Nano Letter, 12, 12, 7601-7608 (2018)
  8. M. Jablan, H. Buljan, M. Soljačić, Phys. Rev. B 80, 245435 (2009)
  9. D. C. Pedrelli, B. S. C. Alexandre, EPL 126 27001 (2019).
  10. L. Xiaoguang, Q. Teng, et al., Materials Science and Engineering: R: Reports, 74, 11, 351-376 (2013)
  11. A. Principi, M. Carrega et al, Phys. Rev. B 90, 165408 (2014)
  12. L. H. Zeng, C. Zhang et al., Sci Rep 5, 8443 (2015)
  13. K.I. Bolotin, K.J. Sikes et al., Solid State Communications, 146, 9–10, 351-355 (2008)
  14. S. V. Boriskina, T. A. Cooper et al., Advances in Optics and Photonics, 9, 4, 775-827 (2017)
  15. E. E. Narimanov, Phys. Rev. A 99, 023827 (2019)
  16. D. Ziemkiewicz, K. Słowik, and S. Zielińska-Raczyńska, Opt. Lett. 43, 490-493 (2018)
  17. Qi Zhang, Chaohua Tan et al., Chin. Opt. Lett. 13, 082401 (2015)
  18. S. Ali Hassani Gangaraj and F. Monticone, Optica 6, 1158- 1165 (2019)
  19. T. Tomohiro et al., J. Phys.: Condens. Matter 31 305001 (2019)
  20. A. Marini, D. V. Skryabin, and B. Malomed, Opt. Express 19, 6616-6622 (2011)
  21. V. G. Achanta, Reviews in Physics, 5, 100041 (2020)
  22. M. Abd El-Fattah, Zakaria & Mkhitaryan, Vahagn & Brede, et al., Plasmonics in Atomically-Thin Crystalline Silver Films (2019)
  23. A. R. Echarri, J. D. Cox, F. J. Garcia de Abajo, Quantum Effects in the Acoustic Plasmons of Atomically-Thin Heterostructures, [arXiv:1901.07098v3] (2019)
  24. L. Zheng, U. Zywietz, A. Evlyukhin, Sensors (Basel) 19 (21):4633 (2019)
  25. L. Grave de Peralta, D. Domínguez, Optics Communications, 286, 151-155 (2013)
  26. L. Lin, Manipulation of Near Field Propagation and Far Field Radiation of Surface Plasmon Polariton, Springer Theses (2017)
  27. Gao, Xi and Cui, Tie Jun, Nanotechnology Reviews, 4, 3, 239- 258 (2015)
  28. J. D. Jackson, Classical Electrodynamics, John Wiley & Sons (2007)
  29. P. Kostrobij, B. Markovych, Philosophical Magazine Letters, Effect of Coulomb interaction on chemical potential of metal film (2018)
  30. N. Ashcroft, N. Mermin, Cornell University, Harcourt, Solid State Physics, (1976)
  31. P. Kostrobij, V. Polovyi, MMC, 6, 2, 297-303, Influence of the Thickness of a Metal Nanofilm on the Spectrum of Surface Plasmons (2019)
  32. V. Pogosov, A. Babich, and P. Vakula, Phys. Solid State 55, 2120 (2013)

Article full text

Download PDF