The effect of the max-phase Ti3AlC2 on hydrogen storage properties of Mg

  • 1 G.V. Kurdyumov Institute for Metal Physics NAS of Ukraine, Kiev, Ukraine


The MAX-phase Ti3AlC2 was synthesized by sintering method. The study of sorption properties of the sample was carried out under conditions continuous heating. It was established that desorption of hydrogen begins at a temperature of ~ 210 °С. After complete desorption, the sample was re-heated in an atmosphere of hydrogen. It was found that Mg-5 wt% Ti3AlC2 composite begins absorb hydrogen at a temperature of ~ 76 °С. As a result of cycling, the temperature of desorption has shifted towards lower values ~ 186 °C.



  1. Zuttel A. Hydrogen storage methods. Naturwissenschaften, 2004, 91, P. 157–172. (Zuttel A.).
  2. Sakintuna B. Metal hydride materials for solid hydrogen storage: Areview. International journal of hydrogen energy, 2007, 32, P. 1121 – 1140. (Sakintuna B., LamariDarkrim F., Hirscher M.).
  3. Schlapbach L. Hydrogen-storage materials for mobile applications. Nature, 2011, 414, P. 353–358. (Schlapbach L., Züttel A.).
  4. Webb C.J. A review of catalyst-enhanced magnesium hydride as a hydrogen storage material. Journal of physics and chemistry of solids, 2015, 84, P. 96-106. (Webb C.J.).
  5. Li J. Catalysis and downsizing in Mg-based hydrogen storage materials. Catalysts, 2018, 8, P. 89. (Li J., Li B., Shao H., Li W., Lin H.).
  6. Oelerich W. Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. J Alloys Compd., 2001, 315, P. 237-242. (Oelerich W., Klassen T., Bormann R.).
  7. Varin R. A. Hydrogen desorption properties of MgH2 nanocomposites with nano-oxides and Inco micrometricand nanometric-Ni. J Alloys Compd., 2007, 446-447 P. 63-66. (Varin R. A., Czujko T., Wasmund E. B., Wronski Z. S.).
  8. Wang K. Novel MAX-phase Ti3AlC2 catalyst for improving the reversible hydrogen storage properties of MgH2. International journal of hydrogen energy, 2017, 42, 7, P. 4244-4251. (Wang K., Du H., Wang Z., Gao M., Pan H., Liu Y.)
  9. Zhengyang S. A novel solid-solution MXene (Ti0.5V0.5)3C2 with high catalytic activity for hydrogen storage in MgH2. Materialia, 2018, V. 1, P. 114-120. (Zhengyang S., Zeyi W., Min Z., Mingxia G., Jianjiang H., Fang D., Yongfeng L., Hongge P.).
  10. Liu Y. Superior catalytic activity derived from a twodimensional Ti3C2 precursor towards the hydrogen storage reaction of magnesium hydride. Chem. Commun., 2015, 52, 4, P. 705–708. (Liu Y., Du H., Zhang X., Yang Y., Gao M., Pan H.).
  11. Chen G. Effects of two-dimension MXene Ti3C2 on hydrogen storage performances of MgH2-LiAlH4 composite. Chemical Physics, 2019, 552, P. 178–187. (Chen G., Zhang Y., Cheng H., Zhu Y., Li L., Lin H.).
  12. Sibanyoni J.M. Magnesium–carbon hydrogen storage hybrid materials produced by reactive ball milling in hydrogen. Carbon, 2013, 5, 7, P. 146 –160. (Sibanyoni J.M., Denys R.V., Williams M., Pollet B.G., Yartys V.A.).
  13. Bobet J-L. Hydrogen sorption of Mg-based mixtures elaborated by reactive mechanical grinding. Journal of alloys and compounds, 2002, 336, P. 292–296. (Bobet JL., Chevalier B., Song M.Y., Darriet B., Etourneau J.).
  14. Lutterotti L. MAUD: Material Analysis Using Diffraction ( (Lutterotti L.).
  15. Crivello J.-C. Review of magnesium hydride-based materials: development and optimisation. Appl. Phys. A, 2016, 122, P. 97. (Crivello J.-C., Dam B., Denys R. V., Dornheim M., Grant D. M., Huot J., Jensen T. R., Jongh P. De, Latroche M., Milanese C., Milcˇius D., Walker G. S., Webb C. J., Zlotea C., Yartys V. A.).

Article full text

Download PDF