Optical Logic Half Adder Based On Multi Ring Resonators Silicon Photonic Crystal Structures

  • 1 Faculty of Engineering, Holon Institute of Technology (HIT), Holon, Israel


In this paper, we introduce an innovative design for an all-optical half adder (HA) utilizing a pair of dual-ring resonators within a 2-dimensional square lattice photonic crystal (PC) framework, all achieved without the use of nonlinear materials. The all-optical HA encompasses both AND and XOR gates, each constructed with cross-shaped waveguides and twin ring resonators positioned in a 2D square lattice PC. These resonators are filled with silicon (Si) rods set in a silica (SiO2) medium. Employing the plane-wave expansion (PWE) and finite difference time domain (FDTD) techniques, we comprehensively analyzed and simulated the behavior of the AND and XOR gates. The simulation outcomes reveal that the internal light propagation within the device emulates the functions of traditional AND and XOR gates.
Consequently, the proposed device displays promising potential for integration into optical arithmetic logic units, thereby enhancing digital
computing circuits.
The structural configuration encompasses an optical AND gate and an optical XOR gate, meticulously designed to operate within the Cband spectrum. The results unequivocally demonstrate a distinct demarcation between logic states 1 and 0, encapsulating a narrow power range that contributes to heightened robustness and minimized logic errors within the photonic decision circuit. Hence, the proposed HA stands as a pivotal building block in the creation of cutting-edge photonic arithmetic logic units.


  1. E. Cohen, D. Malka, A. Shemer, A. Shahmoon, Z. Zalevsky, and M. London, "Neural networks within multi-core optic fibers" Scientific Reports (2016).
  2. B. Baruch Ben Zaken, T. Zanzury, and D. Malka, "An 8- Channel Wavelength MMI Demultiplexer in Slot Waveguide Structures" Materials. 9(11), 881 (2016).
  3. N. Katash, S. Khateeb, and D. Malka "Combining Four Gaussian Lasers Using Silicon Nitride MMI Slot Waveguide Structure" Micromachines. 13(10), 1680 (2022).
  4. R. Dadabayev, N. Shabairou, Z. Zalevsky, D. Malka “A visible light RGB wavelength demultiplexer based on silicon-nitride multicore PCF” Opt. & Laser Tech. 111, 411-416 (2019).
  5. N. A. Shalmany, A. G. Pour Rahbar, “On the choice of all-optical switches for optical networking” IEEE, (2007).
  6. R. A Barry, V. W. S. Chan, K. L. Hall, E. S. Kintzer, J. D. Moores, K. A. Rauschenbach, E. A. Swanson, L. E. Adams, C. R. Doerr, S. G. Finn, H. A. Haus, E. P. Ippen, W. S. Wong, M. Haner “All-Optical Network Consortium-ultrafast TDM networks” IEEE, 14(5), 999– 1013 (1996).
  7. J. M. Lukens, H. H. Lu, B. Qi, P. Lougovski, A. M. Weiner, B. P. Williams “All-Optical Frequency Processor for Networking Applications” IEEE. 38(7) 1678-1687 (2020).
  8. Y. Ji, H. Wang, J. Cui, M. Yu, Z. Yang, and L. Bai "All-optical signal processing technologies in flexible optical networks" Photonic Network Communications 38, 14–36 (2019).
  9. P. St. J. Russell, “Photonic-crystal fibers, “ J. Lightwave Technol. 24, 4729-4749 (2006).
  10. T. A. Birks, J. C. Knight, and P. St. J. Russel, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961- 963 (1997).
  11. J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: A new class of optical waveguides,” Opt. Fiber Technol. 5, 305-330 (1999).
  12. P. Polishuk, “Plastic optical fibers branch out”, IEEE. 44(9), 140-148 (2006).
  13. K.E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing”.IEEE 6(6), 1428-1435 (2000).
  14. T. Akiyama, M. Sugawara, Y. Arakawa, “Quantum-Dot Semiconductor Optical Amplifiers”, IEEE 95(9), 1757- 1766 (2007).
  15. Armstrong, I. and Andonovic, I. and Kelly, A. E., “Semiconductor optical amplifiers: performance and applications in optical packet switching”, Journal of Opt. Networking 3(12), 1536-(2004).
  16. A. Sharaiha, J. Topomondzo, P. Morel, “All-optical logic AND–NOR gate with three inputs based on cross-gain modulation in a semiconductor optical amplifier”, Optics Communications 265(1), 322-325(2006).
  17. X. Zhang, S. Thapa and N. Dutta, “All-optical XOR gates based on dual semiconductor optical amplifiers” Cogent Physics, 6(1), (2019).
  18. P. Urquhart, O. G. Lopez, G. Boyen, A. Bruckmann, “Optical Amplifiers for Telecommunications”, IEEE, (2007).
  19. D. Elbaz, D. Malka, and Z. Zalevsky, “ Photonic crystal fiber based 1xN intensity and wavelength splitters/couplers, “Electromagnetics 32, 209–220 (2013).
  20. D. Malka, Y. Sintov and Z. Zalevsky, “Fiber-laser monolithic coherent beam combiner based on multicore photonic crystal fiber, “ Opt. Eng. 54(1), 011007-1- 011007-5 (2014).
  21. D. Malka and A. Peled, “Power splitting of 1 × 16 in multicore photonic crystal fibers” Applied Surface Science 417, 34 - 39 (2017).
  22. D. Malka and G. Katz, “An Eight-Channel C-Band Demux Based on Multicore Photonic Crystal Fiber” Nanomaterials 8(10), 845 (2018).
  23. D. Malka, E. Cohen, and Z. Zalevsky, “Design of 4 × 1 Power Beam Combiner Based on MultiCore Photonic Crystal Fiber” Appl. Sci. 7(7), 695 (2017).
  24. O. Katz and D. Malka, “Design of novel SOI 1 × 4 optical power splitter using seven horizontally slotted waveguides” Photonics and Nanostructures - Fundamentals and Appl. 25, 9 - 13 (2017).
  25. D. Malka and Z. Zalevsky, “Multicore Photonic Crystal Fiber Based 1x8 Two-Dimensional Intensity Splitters/Couplers,” Electromagnetics 33, 413–420 (2013).
  26. K. Singh, G. Kaur, “Interferometric architectures based All-Optical logic design methods and their implementations”, Optics & Laser Tech., 69, 122- 132(2015).
  27. A. Sharma, K. Goswami, H. Mondal, T. Datta & M. Sen, “A review on photonic crystal based all-optical logic decoder: linear and nonlinear perspectives”, Optical and Quantum Electronics 54(90), (2022).
  28. Jiao SM, Liu JW, Zhang LW, Yu FH, Zuo GM, “All-optical logic gate computing for high-speed parallel information processing.” Opto-Electron Sci 1, (2022).
  29. H. M.E. Hussein, T. A. Ali, N. H. Rafat “A review on the techniques for building all-optical photonic crystal logic gates”, Optics & Laser Tech., 106, 385-397(2018).
  30. Y. Chen, Y. Cheng, R. Zhu, F. Wang, H. Cheng, Z. Liu, C. Fan, Y. Xue, Z. Yu, J. Zhu, X. Hu, and Q. Gong, "Nanoscale all-optical logic devices", Science China Physics, Mechanics & Astronomy, 62, 44201(2019).
  31. Mohammad Mehdi Karkhanehchi, Fariborz Parandin, Abdulhamid Zahedi, "Design of an all optical half-adder based on 2D photonic crystals", Springer Science+Business Media New York (2016).
  32. Enaul Haq Shaik, Nakkeeran Rangaswamy, "Implementation of photonic crystal based all-optical half adder using T-shaped waveguides", 2nd International Conference on Computing and Communications Technologies (ICCCT), (2017).
  33. B.Elizabeth Caroline, M. Margarat, J. Vidhya, D. Purushothaman, R. Jayasri, "Design of Superficial Half Adder with 2D Photonic Crystals Multi Resonance Effect", 7th International Conference on Smart Structures and Systems (ICSSS), (2020).
  34. Ali Lalbakhsh, Fariborz Parandin, Reza Kamarian, Mohamadreza Jomour, Mohammad Alibakhshikenari, "Ultra-compact Photonic Crystal Based All Optical Half Adder", Photonics & Electromagnetics Research Symposium (PIERS), (2021).
  35. P.Yonatan, M. Gulitski, O. Mizrahi, D Malka. 2023. "Design of All-Optical Logic Half-Adder Based on Photonic Crystal Multi-Ring Resonator" Symmetry 15, no. 5: 1063.

Article full text

Download PDF