CAPILLARY PENETRATION (SPREADING AND WICKING) MECHANISMS IN PLASMA-AIDED SURFACE FINISHING PROCESSES

  • 1 Faculty of Electrical Engineering, Technical University of Sofia, Bulgaria

Abstract

The plasma-aided flame retardation of wood, wooden products and cellulosic fibrous materials has been conceived and developed as a surface finishing process of capillary impregnation with nitrogen- and phosphorous flame retardant containing water solution. The surface pre-treatment in atmospheric pressure dielectric barrier discharge plasma substantially alters its capillary activity – the spreading on the wood surface and the wicking in the depth of wood, thus improving some basic characteristics of the impregnation process. This study has been developed as part of a large investigation on plasma-chemically activated (polarized, functionalized) wood surface and surfactants enhanced plasma aided capillary impregnation with nitrogen- and phosphor flame retardant containing water solution. The experimental studies of capillary activity changes on European white pine (Pinus Sylvestris, Bulgaria) wood surfaces using selected surfactants and spreaders show that they have substantial contribution to the effective plasma-aided capillary activity and impregnation processes.

Keywords

Article full text

Download PDF