Estimation of structural similarity between plant-derived phenolic compounds and drug molecules by virtual screening of DrugBank

  • 1 Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria


Phenols are widely distributed in various plants and plant-derived foods. Currently, there is an increasing interest in their application as food supplements. In this study we performed a virtual screening to identify potential molecular targets of phenolic compounds derived from medicinal plants known for their antioxidant and anticancer effects. A dataset of 75 phenols, reported in the literature and a virtual library of 7770 unique drug compounds, extracted from the DrugBank database ( were used. Multi-conformer structure databases were created using OpenEye OMEGA, shape- and chemical-based overlays of the conformers were performed in OpenEye ROCS ( As a result of the virtual screening, followed by data filtration and analysis, two bacterial enzymes, responsible for DNA replication, were suggested as potential novel targets of a plant-derived hydroxyanthraquinone. This research allows outlining the potential receptor-mediated pharmacological mechanisms of phenolic compounds and aims to be a first step in the development of in silico protocol for their prioritisation as healthy dietary supplements.



  1. Guasch-Ferré M., J. Merino, Q. Sun, M. Fitó, J. Salas-Salvadó. Dietary Polyphenols, Mediterranean Diet, Prediabetes, and Type 2 Diabetes: A Narrative Review of the Evidence. Oxid Med Cell Longev., 2017:6723931, 2017.
  2. Gorzynik-Debicka M., P. Przychodzen, F. Cappello, A. Kuban- Jankowska, A. Marino Gammazza, N. Knap, M. Wozniak, M. Gorska-Ponikowska. Potential Health Benefits of Olive Oil and Plant Polyphenols. Int J Mol Sci., 19, 2018, pii: E686.
  3. Sharma A., M. Kaur, J.K. Katnoria, A.K. Nagpal. Polyphenols in Food: Cancer Prevention and Apoptosis Induction. Curr Med Chem., 25, 2018, 4740-4757.
  4. Goszcz K., G.G. Duthie, D. Stewart, S.J. Leslie, I.L. Megson. Bioactive polyphenols and cardiovascular disease: chemical antagonists, pharmacological agents or xenobiotics that drive an adaptive response? Br J Pharmacol., 174, 2017, 1209-1225.
  5. Tresserra-Rimbau A., R.M. Lamuela-Raventos, J.J. Moreno. Polyphenols, food and pharma. Current knowledge and directions for future research. Biochem Pharmacol., 156, 2018, 186-195.
  6. Hassan M., Q. Abbas, Z. Ashraf, A.A. Moustafa, S.Y. Seo. Pharmacoinformatics exploration of polyphenol oxidases leading to novel inhibitors by virtual screening and molecular dynamic simulation study. Comput Biol Chem., 68, 2017, 131- 142.
  7. Bommu U.D., K.K. Konidala, N. Pabbaraju, S. Yeguvapalli. QSAR modeling, pharmacophore-based virtual screening, and ensemble docking insights into predicting potential epigallocatechin gallate (EGCG) analogs against epidermal growth factor receptor. J Recept Signal Transduct Res., 39, 2019, 18-27.
  8. Lin S.H., K.J. Huang, C.F. Weng, D. Shiuan. Exploration of natural product ingredients as inhibitors of human HMG-CoA reductase through structure-based virtual screening. Drug Des Devel Ther., 26, 2015, 3313-24.
  9. Wishart D.S., Y.D. Feunang, A.C. Guo, E.J. Lo, A. Marcu, J.R. Grant, T. Sajed, D. Johnson, C. Li, Z. Sayeeda, N. Assempour, I. Iynkkaran, Y. Liu, A. Maciejewski, N. Gale, A. Wilson, L. Chin, R. Cummings, D. Le, A. Pon, C. Knox, M. Wilson. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res., 46, 2018, D1074-D1082.
  10. Xu D., L. Cai, S. Guo, L. Xie, M. Yin, Z. Chen, H. Zhou, Y. Su, Z. Zeng, X. Zhang. Virtual screening and experimental validation identify novel modulators of nuclear receptor RXRα from Drugbank database. Bioorg Med Chem Lett., 27, 2017, 1055-1061.
  11. Dietrich R.C., L.N. Alberca, M.D. Ruiz, P.H. Palestro, C. Carrillo, A. Talevi, L. Gavernet. Identification of cisapride as new inhibitor of putrescine uptake in Trypanosoma cruzi by combined ligand- and structure-based virtual screening. Eur J Med Chem., 149, 2018, 22-29.
  12. Montanari F., A. Cseke, K. Wlcek, G.F. Ecker. Virtual Screening of DrugBank Reveals Two Drugs as New BCRP Inhibitors. SLAS Discov., 22, 2017, 86-93.
  13. Cai Y.Z., S. Mei, X. Jie, Q. Luo, H. Corke. Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci., 78, 2006, 2872- 88.Hawkins P.C., A.G. Skillman, G.L. Warren, B.A. Ellingson, M.T. Stahl. Conformer generation with OMEGA: algorithm and validation using high quality structures from the ProteinDatabank and Cambridge Structural Database. J Chem Inf Model., 50, 2010, 572-84.
  14. Hawkins P.C., A.G. Skillman, A. Nicholls. Comparison of shape-matching and docking as virtual screening tools. J Med Chem., 50, 2007, 74-82.
  15. Galluzzo P., P. Ascenzi, P. Bulzomi, M. Marino. The nutritional flavanone naringenin triggers antiestrogenic effects by regulating estrogen receptor alpha-palmitoylation. Endocrinology., 149, 2008, 2567-75.
  16. Kim S., T.I. Park. Naringenin: a partial agonist on estrogen receptor in T47D-KBluc breast cancer cells. Int J Clin Exp Med., 6, 2013, 890-9.
  17. Shin J.A., S. Oh, J.H. Ahn, E.M. Park. Estrogen receptor-mediated resveratrol actions on blood-brain barrier of ovariectomized mice. Neurobiol Aging., 36, 2015, 993-1006.
  18. Gong P., Z. Madak-Erdogan, J.A. Flaws, D.J. Shapiro, J.A. Katzenellenbogen, B.S. Katzenellenbogen. Estrogen receptor-α and aryl hydrocarbon receptor involvement in the actions of botanical estrogens in target cells. Mol Cell Endocrinol., 437, 2016, 190-200.
  19. Modh R.P., S.P. Kumar, Y.T. Jasrai, K.H. Chikhalia. Design, synthesis, biological evaluation, and molecular modeling of coumarin-piperazine derivatives as acetylcholinesterase inhibitors. Arch Pharm (Weinheim)., 346, 2013, 793-804.
  20. Dekermendjian K., J. Ai, M. Nielsen, O. Sterner, R. Shan, M.R. Witt. Characterisation of the furanocoumarin phellopterin as a rat brain benzodiazepine receptor partial agonist in vitro. Neurosci Lett., 219, 1996, 151-4.
  21. Zhang D., Y. Yan, H. Tian, G. Jiang, X. Li, W. Liu. Resveratrol supplementation improves lipid and glucose metabolism in high-fat diet-fed blunt snout bream. Fish Physiol Biochem., 44, 2018, 163-173.
  22. Shi Y., F. Meng, J. Liu, B. Wang. In silico modeling and in vitro activity of vitexin and isovitexin against SGLT2. Journal of Theoretical and Computational Chemistry, 2019, doi: 10.1142/S0219633619500354.
  23. Vedavanam K., S. Srijayanta, J. O'Reilly, A. Raman, H. Wiseman. Antioxidant action and potential antidiabetic properties of an isoflavonoid-containing soyabean phytochemical extract (SPE). Phytother Res., 13, 1999, 601-8.
  24. Hirayama B.A., A. Díez-Sampedro, E.M. Wright. Common mechanisms of inhibition for the Na+/glucose (hSGLT1) and Na+/Cl-/GABA (hGAT1) cotransporters. Br J Pharmacol., 134, 2001, 484-95.
  25. Li Y., J.G. Jiang. Health functions and structure-activity relationships of natural anthraquinones from plants. Food Funct., 9, 2018, 6063-6080.
  26. Basu S., A. Ghosh, B. Hazra. Evaluation of the antibacterial activity of Ventilago madraspatana Gaertn., Rubia cordifolia Linn. and Lantana camara Linn.: isolation of emodin and physcion as active antibacterial agents. Phytother Res., 19, 2005, 888-94.

Article full text

Download PDF