• Effect of printing parameters on mechanical properties of 3D printed PLA/carbon fibre composites

    Materials Science. Non-Equilibrium Phase Transformations., Vol. 4 (2018), Issue 4, pg(s) 126-128

    Three-dimensional (3D) printing technologies have been developed for prototype purposes. However, it has become possible to manufacture various functional parts with improving mechanical properties of 3D printing materials. Although polylactic acid (PLA) is the most widely used 3D printing material, the mechanical properties required for functional parts are not sufficient. For this reason, carbon fibre reinforced PLA composites are preferred as 3D printing material to advance the mechanical properties of the fabricated parts. However, for 3D printed parts, it is known that the layer thickness and printing orientation angles affect the mechanical properties. In this study, unreinforced PLA and 15% carbon fibre reinforced PLA composite tensile specimens were 3D printed using fused deposition modeling (FDM) technique. The effects of printing orientation angle and layer thickness on modulus of elasticity and tensile strength are investigated. 3D printed unreinforced PLA samples exhibited better tensile performance as compared to carbon fibre reinforced PLA composite samples.

  • PRINTING PARAMETERS EFFECT ON SURFACE CHARACTERISTICS OF 3D PRINTED PLA MATERIALS

    Machines. Technologies. Materials., Vol. 12 (2018), Issue 7, pg(s) 266-269

    Three-dimensional (3D) printing technologies are the most promising method in the production of functional parts. Although 3D printing technology includes various methods, fused deposition modelling (FDM) is the most widely used one. In FDM, generally polylactic acid (PLA) filaments are used to fabricate 3D geometry by stacking individual layers. In fact, FDM is a complicated process with numerous parameters that affect printing quality. Printing parameters such as printing orientation, layer thickness, printing orientation angle, filling ratio, filament feed rate, etc. have significant impact on the quality and performance of FDM printed parts. Since the mechanical properties are very important for functional parts, the effect of these parameters on the mechanical properties of the PLA specimens has been extensively studied. However, there is no sufficient data in the surface characterization literature of these parameters. In this study, the effect of layer thickness and printing temperature on the surface properties of PLA specimens printed using FDM was investigated.