Capability of micro-milling in machining of difficult-to-cut materials

  • 1 University of Banjaluka, Faculty of Mechanical Engineering, Banja Luka, Bosnia and Herzegovina
  • 2 University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia


The trend of using micro-parts in modern industry puts new tasks for contemporary production technologies. If these parts are made of difficult-to-machine materials, machining problems become more complicated. On the other hand, the requirements go towards manageable and stable production processes, reduction of the processes number, reduction of the machining cost, using of clean technologies, etc. Use of mechanical solid tools in engineering materials micro-machining, many problems occur, such as: high machined surface roughness of the, tool deflection, intensive tool wear, etc. These problems lead to difficulties in establishing adequate process models, and thus the ability to control of micro-milling process and it’s including in smart processes and smart factory concepts. This paper presents the possibilities of using micro-milling in the difficult-to-process materials machining. The phenomena in micro-cutting are analysed, as well as the output machinability indicators (surface roughness, tool wear, etc.). As a conclusion, guidelines and technological frameworks for the application of micro-milling in practice are given.



  1. D. Dornfeld, S. Min, Y. Takeuchi: Recent advanced in mechanical micromachining, Annals of CIRP, 55 (2), 745-768 (2006).
  2. M.A. Camara, J.C.C. Rubio, A.M. Abrao, J.P. Davim: State of the art on micromilling of materials, a review, J Mater Sci Technol 28 (8), 673–685 (2012).
  3. G. Bissacco, H.N. Hansen, L. De Chiffre: Size effects on surface generation in micro milling of hardened tool steel. Annals of CIRP, 55 (1), 593-596 (2006).
  4. F. Schneider, J. Das, B. Kirsch, et al.: Sustainability in ultraprecision and micro machining: a review, Int. J. of Precis. Eng. and Manuf. - Green Tech. 6, 601–610 (2019).
  5. “State of the art micromachining CNC service” by 3D Industries, Inc. Web site: Accessed: 04.11.2021.
  6. E. Brinksmeier, O. Riemer, R. Stern: Machining of precision parst and microstructures“, Proc. of 10th International Conference on Precision Engineering (ICPE), Yokohama, Japan, 3-12 (2001).
  7. M. A. Rahman, M. Rahman, A. S. Kumar, H. S. Lim: CNC microturning: an application to miniaturization, Int J Mach Tools Manuf 45(6), 631-639 (2005).
  8. J.S. Nam, P.H. Lee, S.W. Lee: Experimental characterization of micro-drilling process using nanofluid minimum quantity lubrication, Int J Mach Tools Manuf 51(7), 649-652 (2011).
  9. C. Brecher, C. Wenzel, R. Klar: Characterization and optimization of the dynamic tool path of a highly dynamic micromilling machine, CIRP J Manuf Sci and Tech 1(2), 86-91, (2008).
  10. J. C. Aurich, J. Engmann, G. M. Schueler, R. Haberland: Micro grinding tool for manufacture of complex structures in brittle materials, CIRP Annals - Manuf Tech 58(1), 311-314 (2009).
  11. J. Chae, S. S. Park, T. Freiheit: Investigation of micro-cutting operations, Int J Mach Tools Manuf 46, 313–332 (2006).
  12. I. Ucun, K. Aslantas, B. Gockce, F. Bedir: Effect of tool coating materials on surface roughness in micromachining of Inconel 718 super alloy. P I Mech Eng B-J Eng 288(12): 1550-1562 (2014).
  13. E. Kuram, B. Ozcelik: Optimization of machining parameters during micro-milling of Ti6Al4V titanium alloy and Inconel 718 materials using Taguchi method. Proc I MechE Part B: J Engineering Manufacture 231(2), 228–242 (2017).
  14. X. Lu, Y. Lu, F. Wang, C. Zhao: Research on surface residual stress of micro-milling nickel-based superalloy Inconel 718. Int J Nanomanufacturing 12(1), 82 – 92 (2016).
  15. X. Lu, Z. Jia, H. Wang, L. Si, X. Wang: Surface roughness prediction model of micro-milling Inconel 718 with consideration of tool wear. Int. J. of Nanomanufacturing 12(1), 93 - 108 (2016).
  16. T. Thepsonthi, T. Ozel: Experimental and finite element simulation based investigations on micro-milling Ti-6Al-4V titanium alloy: Effects of cBN coating on tool wear, J Mater Process Tech 213, 532– 542 (2013).
  17. D. Biermann, F. Kahleyss F, E. Krebs E, T. Upmeier: A study on micro-machining technology for the machining of NiTi: five-axis micro-milling and micro deep-hole drilling, J Mater Eng Perform 20(4-5), 745-751 (2010).
  18. S. H. I. Jaffery, M. Khan M, L. Ali, P. T. Mativenga: Statistical analysis of process parameters in micromachining of Ti-6Al-4V alloy, Proc IMechE Part B: J Eng Manuf 230(6), 1017–1034 (2016).
  19. N. A. Krishnan, J. Mathew: Studies on wear behaviour of AlTiN-coated WC tool and machined surface quality in micro endmilling of Inconel 718. Int J Adv Manuf Technol 110, 291–307 (2020).
  20. M. Atif, M. K. Gupta, T. Mikołajczyk, D. Y. Pimenov, K. Giasin: Effect of tool coating and cutting parameters on surface roughness and burr formation during micromilling of Inconel 718, Metals 11(1), 1-18 (2021).

Article full text

Download PDF